THE SOLAR INGRESS (SANKRĀNTI) ACCORDING TO THE MAKARANDASĀRINİ AND OTHER INDIAN ASTRONOMICAL TEXTS

S.K. Uma
Department of Computer Applications, Sir Mokshagundam Visvesvaraya
Institute of Technology, Bangalore 560 157, India.
Email: uma.sreenath@yahoo.com

Padmaja Venugopal

Department of Mathematics, SJB Institute of Technology, Bangalore 60, India.
Email: venugopalpadmaja@gmail.com

K. Rupa
Department of Mathematics, Global Academy of Technology, Rajarajeshwari Nagar, Bangalore 98, India.
Email..shr_rupak@yahoo.co.in
and

S. Balachandra Rao
Honorary Director, Bhavan's Gandhi Centre for Science and Human Values, Bangalore 560001, India.
Email: balachandra1944@gmail.com

Abstract

In the present paper we analyze the procedure for the computation of the sidereal solar ingress according to the popular Indian astronomical table, the Makarandasāriñi. The results are compared with those obtained from the basic treatise Sūryasiddhānta, from the Vākya and the Ganakānanda, and also from those based on modern computations.

We have also discussed the varying durations of the solar months and the solar ingress to the twenty-seven nakșatras (zodiacal asterisms). A number of illustrative examples are also provided.
Keywords sankrānti, nakșatra, Makarandasāriṇī (MKS), saurapakșa, Gaṇakānanda (GNK), sauramāna, cāndramāna, adhikamāsa

1 INTRODUCTION

Sañkrānti is the instant when the Sun enters a rāśi (sidereal zodiac sign). In Indian astronomy a sidereal solar year commences when the Sun enters Meșa, the sidereal sign for Aries. Currently this occurs around 14-15 April, but due to the precision of equinox this date shifts by one day in about 72 years.

In Indian society, the Meșa sañkrānti plays an important socio-religious role. In the Hindu calendar, religious festivals are celebrated either according to the solar calendar (sauramāna) or the lunar calendar (cāndramāna). For example, in regions like Tamil Nadu, Kerala, West Bengal and Dakshina Kannda in Karnataka the solar calendar is adopted. On the other hand in most of the other parts of India like Karnataka, Maharashtra and Andhra the lunar calendar is followed.

The solar months (māsas) are generally named after the Sun's entry into rāśis (sidereal signs) such as Meșa (Aries), Vrșabha (Taurus) etc. But more popularly, the names of the solar months are the same as those of the lunar
months viz., Caitra, Vaiśākha etc.
Most of the Hindu festivals are based on the luni-solar (or lunar) calendar. For example Krș,̦, based on the lunar calendar. On the other hand, the festival of Makara Sañkrānti (Pongal festival) and Tamil New Year's day (Sauramānayugādi) are based on the solar calendar. The famous Kerala festival Tiruonam is observed annually in the solar month of Simha when the Moon occupies the Śravaṇa nakșatra (lunar mansion).

In the following sections we discuss the tables for the determination of Sañkrānti given in the Makarandasāriṇī (MKS). The procedure for this determination as also to find the durations of the successive solar months are discussed mathematically. Examples are provided to illustrate these procedures.

The solar ingress into the 27 nakșatras is also discussed from the corresponding tables of the MKS. In fact, the durations of the Sun's occupation of these nakșatras are called Mahānakșatras. The farmers reckon the seasons by
these Mahānakșatras. For example, the wet season in Karnataka, due to the South-West Monsoon, ranges over about ten Mahānakșatras, from Rohin̦ī to Hasta.

The generation of the related tables is analyzed mathematically. Results obtained using the Makarandasāriṇi are compared with those derived from other texts such as the Vākya, the Gaņakānanda and the Sūryasiddhānta (SS). It should be noted that while the MKS and the GNK are based on the SS, the Vākya system is based on the Āryabhațīya of Āryabhața I (b. C.E. 476).

2 THE SŪRYASIDDHĀNTA, THE MAKARANDASĀRIN̦Ī AND THE GANAKĀNANDA

The currently-popular Sūryasiddhānta is said to date from the ninth or tenth century C.E. Prior to that the above name referred to one of the five systems provided in the Pañcasiddhāntikā of Varāhamihira. In order to distinguish it from the Sūryasiddhānta, Varāhamihira's version is generally called the Saurasiddhānta.

Traditional Indian astronomical almanacs, called pañcāñgas, are compiled annually, based on popular treatises like the Sūryasiddhānta, the Āryabhațīya (C.E. 499), Brahmagupta’s Brāhma-sphu-ţasiddhānta, (C.E. 628), and Gaṇeśa Daivajña's Grahalāghava (C.E. 1520). The pancāńgas generally are computed using various astronomical tables (sāriņīs).

In this paper we consider mainly the Makarandasāriṇī (MKS) and Gan̦akānanda (GNK) astronomical tables, both of which belong to the Saurapakșa (school) following the Sūryasiddhānta. The Vākya system, popular in southern India, is a set of simple and meaningful Sanskrit sentences that are pneumonics of letter numerals that represent the true positions of the heavenly bodies. In this paper, we compare the results of the MKS and the GNK with those of the Vākya system.

2.1 The Gaņakānanda

The Gaņakānanda is a popular text in the Andhra and Karnataka regions among almanac makers. It is a karaņa (manual) text in which the computations of heavenly bodies are calculated from mid-noon. Apart from the textual part, it also contains the astronomical tables. The text is based on the Sūryasiddhānta and authored by Sūryacārya, the son of Bālāditya who came from the Andhra region. The ephocal date of the text is 16 March 1447. Incidentally, there was a solar eclipse on that day. The author incorporated the word-numeral system (bhūtasańkhyā) in explaining the procedure and methods.

2.2 The Makarandasāriṇī (MKS)

The Makarandasāriṇī is a tantra text based on the Sūryasiddhānta. The Makarandasāriṇi was composed in C.E. 1478 by Makarandācārya, the son of the almanac-maker Ānanda. Makarandācārya made quite a few innovations in the procedures to calculate planetary positions and eclipses. Commentaries on the Makarandasāriṇīby Dai-vajña Divākara, called the Makarandavivaraṇa and the Udāharaņa by Daivajña Viśvanātha, are available. The highlight of the text is that the author has reduced four stages of correction (phalasaṁskāras) to only three by combining the half manda and the full manda corrections together to obtain the true planet.

2.3 The Vākya Tables

The Vākyakaraṇa is an astronomical text composed by a Vararuci in the early thirteenth century. It is the most popularly-used text to construct almanacs in the southern parts of India, with the commentary by Sundararāja. The Vākya tables belong to the āryapakṣa, based on the parameters and procedures of Āryabhațīya and mainly on the works of Bhāskara l's Mahābhāskarīya. The Vākyas are given in the form of Kațapayādi notations, a system of letter numerals. This text consists of six astronomical chapters which are very useful to the pañcānga-makers to find the positions of the heavenly bodies in order to perform rituals. The five chapters are:
(i) The true positions of the Sun, the Moon and rāhu (the Moon's ascending node);
(ii) The true positions of the five planets;
(iii) Problems involving time, position and direction;
(iv) Eclipses;
(v) Heliacal rising and setting; and
(vi) Parallel aspects (Mahāpātas).

3 TABLES GIVEN IN THE MKS FOR FINDING SAŃNRĀNTI

In this Section, Table 1 (below) gives the sańkrāntikșepaka (additive) for śaka years with an interval of 24 years. The sarikrāntikșepaka is expressed in vāra (${ }^{v a ̄}$, or week day), ghați $\left.{ }^{\text {gh }}\right)$ and vighatti $\left({ }^{\text {vg }}\right)$, where

1 day $=60$ ghațis
1 ghați $=24$ minutes
1 ghați $=60$ vighațis
1 vighațis $=24$ seconds
Table 1 can be generated by adding $2^{\text {vā }} 12^{\text {gh }}$ 36^{vg} to the previous entry, as shown below in Table 2.

In the printed copies of Viśvanātha's commentary on the MKS, the table of sarikrāntikșepaka is given from śaka years 1568 to 1808. In Table 1, the values are given up to śaka year 2000 by extending the table by adding $2^{\text {vā }} 12^{\text {gh }}$

Table 1：Sañkrāntikșepaka for śaka years．

śaka year	$\stackrel{\square}{\square}$	$\stackrel{\oplus}{\circ}$	$\begin{aligned} & \text { N } \\ & \hline \sim \end{aligned}$	$\stackrel{\varphi}{\varphi}$	$\begin{aligned} & \text { O+ } \\ & 6 \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{8}{\stackrel{\circ}{ }}$	$\stackrel{\underset{\infty}{\infty}}{\stackrel{\text { N }}{2}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	ষ	$\stackrel{\infty}{\aleph}$	N 응	$\begin{aligned} & \bullet \\ & \stackrel{\infty}{\circ} \end{aligned}$	응
Christian Year（CE．）	N	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\text { ® }}{ } \end{aligned}$	$\begin{aligned} & \text { } \\ & \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{-}}$	$\stackrel{\Im}{N}$	$\stackrel{\circ}{\AA}$	$\stackrel{\text { প }}{\underset{\sim}{~}}$	$\stackrel{\underset{\infty}{\infty}}{\underset{\sim}{*}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	응	$\stackrel{\underset{\sim}{\mathrm{N}}}{\stackrel{-}{2}}$	$\stackrel{\infty}{\circ}$	$\underset{\sim}{\infty}$	O-O	으N	ざ	$\stackrel{\infty}{\text { N }}$
vāra	5	0	3	5	0	2	4	0	2	4	6	1	4	6	1	3	6	1	3	5
ghați	41	53	6	19	31	44	56	9	22	34	47	59	12	25	37	50	2	15	28	40
vighați	17	53	29	5	41	17	53	29	5	41	17	53	29	5	41	17	53	29	5	8

36^{Vg} ．The additive constant of $2^{\mathrm{va}} 12^{\mathrm{gh}} 36^{\mathrm{Vg}}$ is obtained by considering the duration of 24 solar years．

Thus we have
$365^{d} .2587565 \times 24=8766^{d} .210156$

$$
=8766^{\mathrm{d}} 11^{\mathrm{gh}} 36^{\mathrm{vg}} \cdot 5616
$$

In the text it is taken as $2^{\text {vā }} 12^{\text {gh }} 36^{\text {vg }}$（by re－ moving the integral multiples of 7 from the inte－ ger part）．

Table 3 gives the vāra（week day），ghați and vighați of the sarikrāntikșepaka for the bal－ ance years（śeșavarșa）from 1 to 24 ．This table is obtained by adding vārādikșepaka 1｜15｜31｜30 for each entry correspondingly from year 2 to 24 and taking approximate integer in the vighatti po－ sition．However，the accumulation of error is reduced for large number of years．

Table 4 gives saṅkrāntikșepaka（additives） of the 12 rāśis（signs）from Meșato Mīna（Si－ dereal Aries to Pisces）．Adding these 12 rāśi sañkrāntiksepaka（additive）values to abdapa of the given śaka year for a given place one can obtain the vāra（week day），ghați and vighați of the Sun＇s entry into the different rāśis．

4 PROCEDURE FOR OBTAINING THE SAN゙KRĀNTI FOR A GIVEN ŚĀLIVĀHANA ŚAKA YEAR ACCORDING TO THE MKS

The following working procedure is adopted in MKS for finding sarikrānti（Sun＇s entry into 12 rāšis）．
（1）Find the nearest Śālivahana（śā）śaka（śeșa varșa）year for the given śā．śaka year using Table 1 and obtain the difference between the given śā．śaka year and the nearest śaka year from the table．The difference is called śeșa－ varșa．
（2）Find vārādi（vāra，ghați and vighați）for the nearest śaka year using Table 1 and for seșa varșa（the balance years）using Table 3.

Table 2：An example illustrating how Table 1 was generated．

	Śaka year	vāra	ghați	vghați
	1568	0	53	53
Adding	24	2	12	36
	1592	3	06	29
Adding	24	2	12	36
	1616	5	19	05

（3）Add vārādi obtained for the nearest śaka year and śeșa varșa（balance years）．
（4）Add the deśāntara correction（the correction in time made for the longitude of the place）to the above sum．The result is called the abdapa for the given place in the given śā．śaka year． Thus，the abdapa is the constant for the given solar year，for the given place，representing the beginning vāra（weekday），ghați and vighați．
（5）Add the sañkrāntikșepaka given in the table 4 for each rāśi from Meșa to Mīna to the above obtained abdapa．The result gives the vāra （day），ghați and vighați of each saǹkrānti（Sun＇s entry into 12 rāśis）correspondingly to from Meșa to Mīna．The above procedure is illustrated in the following examples．

Table 3：Sañkrāntikșepaka for the balance years

śeșavarșa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
vāra	1	2	3	5	6	0	1	3	4	5	6	1	2	3	4	6	0	1	2	4	5	6	0	2
ghați	1 5	31	46	2	17	33	48	4	19	35	50	6	21	37	52	8	23	39	54	10	26	41	57	12
vighați	3 1	3	35	6	38	9	41	12	44	15	47	18	50	21	53	24	56	27	58	30	2	33	5	36

Table 4：Sañkrāntikșepaka for Meșādirāśi（Zodiac signs）

rāśi	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \frac{D}{\partial} \\ & \stackrel{0}{\mathscr{D}} \\ & \frac{D}{j} \end{aligned}$	$\underset{\sim}{\mathbb{N}}$		$\frac{\pi}{E}$	$\begin{aligned} & \text { ToI } \\ & \stackrel{\rightharpoonup}{\dddot{N}} \end{aligned}$	$\stackrel{10}{\lessgtr}$	$$	$\begin{aligned} & \text { ๓ } \\ & \frac{1}{\infty} \\ & \frac{\pi}{\square} \end{aligned}$	$\begin{aligned} & \mathbb{O} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \frac{\pi}{\partial} \\ & \frac{1}{5} \\ & \hline \end{aligned}$	$\stackrel{\mathbb{D}}{\stackrel{E}{\Sigma}}$
vāra	0	2	6	3	6	2	4	6	1	2	4	5
ghați	0	57	23	0	30	30	55	48	17	36	3	53
vighați	0	1	1	51	4	29	48	31	11	4	15	21

Table 5: The day, ghați and vighați of the Sun's entry into the 12 rāśis.

SI. No.	Rāśis	abdapa+kșepaka	day, ghațiandvighați				
1	Meșa	$0\|30\| 45+00\|00\| 00$	$0\|30\| 45$ i.e. Sun enters into Meșaon Saturday at $30^{\text {gh }} 44^{\text {vig }}$				
2	Vrıșabha	0\|30	45+02	57	01	$3\|27\| 46$ i.e. Sun enters into Vrrșabha on Tuesday at $27^{\text {gh }} 45^{\text {vig }}$	
3	Mithuna	0\|30	45+06	23	01	$6\|53\| 46$ i.e. Sun enters into Mithuna on Friday at $53^{\text {gh }} 45^{\text {vig }}$	
4	Karkațaka	0\|30	45+03	00	51	$3\|31\| 36$ i.e. Sun enters into Karkațakaon Tuesday at $31{ }^{\text {gh }} 35^{\text {v/g }}$	
5	Simha	0\|30	45+06	30	04	$7\|00\| 49$ i.e. Sun enters into Simhaon Saturday at $00^{\text {gh }} 48^{\text {vig }}$	
6	Kanyā	0\|30	45+02	30	29	$3\|01\| 14$ i.e. Sun enters into Kanyāon Tuesday at $01^{\text {gh }} 13^{\text {vig }}$	
7	Tulā	0\|30	45+04	55	48	$5\|26\| 33$ i.e. Sun enters into Tulāon Thursday at $26^{\text {gh }} 32^{\text {vig }}$	
8	Vrı́sika	0\|30	45+06	48	31	7\|19	16 i.e. Sun enters into Vrrścikaon Saturday at $19^{\text {gh }} 15^{\mathrm{vgg}}$
9	Dhanus	$0\|30\| 45+01\|17\| 11$	$1\|47\| 56$ i.e. Sun enters into Dhanuson Sunday at $47^{\text {gh }} 55^{\text {vig }}$				
10	Makara	0\|30	45+02	36	04	$3\|06\| 49$ i.e. Sun enters into Makaraon Tuesday at $06^{\text {gh }} 48^{\text {vig }}$	
11	Kumbha	0\|30	45+04	03	15	$4\|34\| 60$ i.e. Sun enters into Kumbha on Wednesday at $33^{\text {gh }} 59^{\text {vig }}$	
12	Mīna	0\|30	45+05	53	21	$6\|24\| 06$ i.e. Sun enters into Mīna on Friday at $24{ }^{\text {gh }} 05^{\text {vig }}$	

(5) Add the sañkrāntikșepaka given in the table 4 for each rāśi from Meșa to Mīna to the above obtained abdapa. The result gives the vāra (day), ghați and vighați of each sañkrānti (Sun's entry into 12 rāśis) correspondingly from Meșa to Mīna. The above procedure is illustrated in the following examples.

4.1 Example Number 1

This example is taken from Viśvanātha's commentary on the MKS.

Given śaka year $=1551$ (1629 C.E.). The nearest śā.śaka year from Table 1 is 1544; the balance years (śeșavarșa) = $1551-1544=7$; vārādi for the nearest śaka year 1544 using Table 1 is $5|41| 17$. Vārādi for the balance years (śeșavarșa) 7 using Table 3 is $1|48| 41$. Adding we get 7|29|58. Adding the deśāntara correction (for Kāśí) $\rightarrow 0|00| 47$ to the above we have abdapa $\rightarrow 7 / 30 / 45$. Thus, the abdapa (for Kāśī) for the given śaka year 1551 is $7|30| 45 \equiv$ $0|30| 45$ (removing multiple of 7). Now adding the sañkrāntiksepaka given in Table 4 for each rāśi from Meșa to Mīna (sidereal Aries to Pisces) to the above obtained abdapa we get the day, ghați and vighaţi of the Sun's entry into 12 rās̄is. This is shown in Table 5.

4.2 Example Number 2

Given śaka year = 1939 (C.E. 2017). The nearest śā.śaka year from Table 1 is 1928; the balance years (śeșavarșa) = $1939-1928=11$; vārādi for the nearest śaka year 1928 using Table 1 is $6|02| 53$. Vārādi for the balance years (śeșavarșa) 11 using Table 3 is 6|50|47. Adding we get $12|53| 40$. Adding the deśāntara correction (for Kāśi) $\rightarrow 0|00| 47$ to the above we have abdapa $\rightarrow 12|54| 27$. Thus, the abdapa (for Kāśl) for the given śaka year 1939 is 12|54|27 三 $5|54| 27$ (removing multiple of 7). Now adding the sarikrāntikșepaka given in the Table 4 for each rāśi from Meșa to Mīna to the above obtained abdapa we get day, ghatti and vighatti of the Sun's entry into 12 rās̈is. This also is shown in Table 5.

5 DURATION OF SOLAR MONTHS

5.1 Durations of Solar Months

We have derived the formula for finding the Sun's entry (sañkrānti) into different rāśis by considering the mean duration of a solar month, the mean daily motion of the Sun and the equation of the centre (mandaphala) of the Sun according to the Sūryasiddhānta.

Duration of Sarikrānti = Mean duration -

where $M K_{\text {end }}$ and $M K_{\text {beg }}$ are the mandakendra (anomaly from the apogee) of the Sun at the end and at the beginning of Sañkrānti respectively and SDM is the Sun's daily motion.

The interval between two successive rāśisankrāntis is defined as a solar month (sauramāsa). For example, the interval between the Meșasankrānti and the Vrșsabhasankrānti is the length of the Meșamāsa. However the durations of the twelve solar months are not uniform. The mean length of a solar month according to the $S S$ can be obtained from the number of civil days (sāvanadinas) in a Mahāyuga of 432×10^{4} sidereal solar years.

5.2 Sankrānti According to the GNK

Civil days according to SS are 1577917828. We have the sidereal (nirayaña) solar year = $1,57,79,17,828 / 432 \times 10^{4}=365.2587565$ days. The maximum equation of the centre (mandaphala) i.e., when the mandakendra is 90° is 130.32'.

The equation of the centre $=\frac{p}{2 \pi} \sin 90^{\circ}=$ $2^{\circ} 10^{\prime} 19.2^{\prime \prime}$ hence $p=13^{\circ} 38^{\prime} 50^{\prime \prime}$. By taking p as $13^{\circ} 40^{\prime}$ we get the mandaphala as $2^{\circ} 10^{\prime}$ $30.42^{\prime \prime}$ i.e. the GNK has taken the variable paridhi (periphery) from 14° to $13^{\circ} 40^{\prime}$ as the MK (mandakendra) varies from 0° to 90°.

Lunar months in a mahāyuga (MY)= 53433336. \therefore One lunar month $=29.53058795$ days and hence one lunar year $=354.367055$ days. Solar year - Lunar year $=10.8917015$
days. The difference in tithis $=11^{\mathrm{tit}} 3^{\mathrm{gh}} 53.4^{\mathrm{vig}}$, where a tithi is $1 / 30^{\text {th }}$ of a lunar month. A mean solar month $=365.2587565 / 12=30.43822971$ days $=30|26| 17.63$ days.

The Sarikrāntiksepakas for the different rāśis according to the GNK are given in Table 6.

5.3 Duration of the Solar Month According to the GNK

Since the text (GNK) is based on the Sūryasiddhānta, the formula for the Sun's entry (solar ingress) into different rāśis is derived by considering the mean duration of the solar month etc. according to the $S S$.

The duration of Sañkrānti = Mean duration -

$$
\frac{1}{2 \pi \times S D M}\left[P(N+1) \sin (M K R)_{1}-P(N) \sin \left(M K R_{2}\right)\right]
$$

where $P(N+1)$ and $P(N)$ are the peripheries at the end of even and odd quadrants the $M K R_{1}$ and $M K R_{2}$ are the mandakendras (anomalies) at the end and the beginning of sarikrāntis respectively and SDM is Sun's daily motion.

The solar month in which the Sun is at apogee (mandocca) is of maximum duration while the solar month in which the Sun is at perigee is of minimum duration. Currently, the Sun is at apogee around 4 July, and at perigee around 2 or 3 January. Correspondingly, the durations of the sidereal solar months of Mithuna and Dhanus (sidereal Gemini and Sagittarius) are respectively maximum and minimum.

The solar month in which the Sun is at apogee (mandocca) is of maximum duration while the solar month in which the Sun is at perigee is of minimum duration. Currently, the Sun is at apogee around 4 July, and at perigee around 2 or 3 January. Correspondingly, the durations of the sidereal solar months of Mithuna and Dhanus (sidereal Gemini and Sagittarius) are respectively maximum and minimum.

Table 6: The Saṅkrāntikșepakas for Meșādirāśis (according to the GNK).

1	Meșa	$11\|5\| 31$
2	Vrșabha	$2\|5\| 32$
3	Mithuna	$6\|19\| 41$
4	Karkaṭaka	$2\|56\| 22$
5	Simha	$6\|24\| 34$
6	Kanyā	$2\|26\| 44$
7	Tulā	$4\|54\| 6$
8	Vrścika	$6\|48\| 13$
9	Dhanus	$1\|18\| 37$
10	Makara	$2\|39\| 30$
11	Kumbha	$4\|6\| 46$
12	Mīna	$5\|55\| 10$

The lengths of the twelve sidereal solar months according to the SS, MKS, Vākya and the GNK and modern computations, are compared in Table 7.

Note the differences among the values between the sārinīs and the modern ones:
(1) The mandaparidhi of the Sun is taken as constant and equal to 13.5° by the Āryabhațan school. The Vākya system belongs to this school.
(2) In the saurapakșa based on the Sūryasiddhāntha, the Sun's mandaparidhi is taken as variable, between $13^{\circ} 40^{\prime}$ and 14°, based on the manda anomaly (mandakendra).
(3) Since there were no calculators and computers in ancient times, computations of the trigonometric function jyā(Rsine) were based on approximate tabular values. Here too, the jyā tables in the Āryabhațīya and the Sūryasiddhānta are provided at intervals of $3^{\circ} 45^{\prime}$.

Many other texts give the jyā tables at even bigger intervals of 10° or 15°.

Table 7: Durations of the solar months.

SI. No.	Rāśis	Sūryasiddhāntha $(S S)$	Makarandasāriṇi $(M K S)$	Vākya	Gañakānanda $(G N K)$	Modern

6 TABLES GIVEN IN THE MKS TO FIND THE SUN＇S ENTRY INTO THE NAKSATRAS（LUNAR MANSIONS）

6．1 Obtaining the Sun＇s Entry into the Twenty－seven Naksatras According to the MKS

The Sun＇s entry into the different naksatras can be obtained by using the following procedure：
（1）Obtain the abdapa for the given saka year using Tables 1 and 3 ，as explained in the case of the Mesa sarikranti（in Section 4）．The abdapa marks the beginning of the sidereal solar year in weekdays（vāra），ghattis and vighatis．
（2）Add the abdapa to the ksepakas of the naksatras given in Table 8．The result gives the weekday，ghati and vighati of Sun＇s entry into different naksatras respectively．

6．1．1 Example 1

This example is taken from Viśvanātha＇s com－ mentary on the MKS．

Given śaka year＝ 1551 （C．E．1629）．The
abdapa（for Kāśl）for the given śaka year 1551 is $7|30| 44 \equiv 0|30| 44$（removing multiples of 7 ）． Now adding the naksatraksepaka given in Table 8 for each naksatra from Aśvinī to Revatī to the above abdapa we get the day，ghați and vighați of the Sun＇s entry into the twenty－seven nak－ scatras．These are listed in Table 9.

6．1．2 Example 2

Given śaka year $=1939$（C．E．2017）．The abdapa（for Kāśli）for the given śaka year 1939 is $12|54| 27 \equiv 5|54| 27$ ．Now，the Sun＇s entry into the twenty－seven nakșatras for the śaka year 1939 （C．E．2017）is obtained by adding nak－ satrakșepaka given in Table 8，as shown in Table 10.

Note that the time duration（in integral num－ ber of days）between the Sun＇s entry from one rāśi to another rāśi is about 30 days，and the same from one naksatra to another naksatra is 14 days．

This explains why the entries to some suc－ cessive naksatras fall on the same weekday．

Table 8：Sankrāntikṣepaka for 27 nakṣatras．

	$\begin{aligned} & \text { '气㐅. } \\ & \text { ※゙ } \\ & \text { © } \end{aligned}$		$\begin{aligned} & \text { 'ㄹ } \\ & \substack{\text { on }} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { Ny } \\ & \text { ON } \end{aligned}$	皆		$\frac{\pi}{3}$	$\frac{\mathbb{E}_{2}}{\frac{0}{\sqrt[4]{4}}}$	$\begin{aligned} & \text { IT } \\ & \stackrel{y}{5} \\ & \stackrel{\pi}{\Sigma} \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathbb{Y} \\ & \underset{\Phi}{\Psi} \end{aligned}$	N N N	㴶				$\stackrel{1 \pi}{5 N}$								$\begin{aligned} & \stackrel{\rightharpoonup}{\widetilde{0}} \\ & \substack{0 \\ \mathbb{O}} \end{aligned}$
0	6	6	6	6	6	6	6	6	6	6	6	5	5	4	3	3	2	1	0	6	5	4	3	2	2	1
0	41	30	24	23	24	29	32	30	30	19	5	43	11	36	56	5	12	17	19	19	26	30	40	51	11	42
0	34	0	35	36	57	38	39	40	4	41	42	43	44	45	46	47	48	11	50	51	0	0	0	0	0	0

Table 9：The Sun＇s entry into the different nakșatras for śaka year 1551.

SI．No．	Nakșatras	abdapa＋kșepaka	Weekday，ghați and vighați of the Sun＇s entry into Nakșatras
1	Aśvinī	0｜30｜45＋00｜00｜00	$0\|30\| 45 i . e$. Saturday at $30^{\text {gh }} 44^{\text {vig }}$
2	Bharañ	$0\|30\| 45+06\|41\| 34$	$0\|12\| 19 i . e$. Saturday at $12^{\text {gh }} 18^{\text {vig }}$
3	Krttikā	0｜30｜45＋06｜30｜00	$0\|00\| 45 i . e . S a t u r d a y ~ a t ~ 009 n 44{ }^{\text {vig }}$
4	Rohinī	$0\|30\| 45+06\|24\| 35$	$6\|55\| 20 i . e . ~ F r i d a y ~ a t ~ 55^{\text {gh }} 19^{\text {vig }}$
5	Mranaśira	$0\|30\| 45+06\|23\| 36$	$6\|54\| 25 i . e$. Friday at $54^{\text {gh }} 24^{\text {vig }}$
6	Ārdrā	$0\|30\| 45+06\|24\| 37$	$6\|55\| 22 i . e . F r i d a y ~ a t ~ 55^{\text {gh }} 21^{\text {vig }}$
7	Punarvasu	$0\|30\| 45+06\|29\| 38$	$0\|00\| 23 i . e$. Saturday at $00^{\text {gh }} 22^{\text {vig }}$
8	Puşya	$0\|30\| 45+06\|32\| 39$	$7\|03\| 24$ i．e．Saturday at $3^{\text {gh }} 23^{\text {vig }}$
9	Āşleşā	0｜30｜45＋06｜32｜40	$7\|03\| 25$ i．e．Saturday at $3^{\text {gh }} 24^{\text {vig }}$
10	Makhā（Maghā）	$0\|30\| 45+06\|30\| 04$	$7\|00\| 49$ i．e．Saturday at $0^{\text {gh }} 48^{\text {vig }}$
11	P．Phālguṇ	$0\|30\| 45+06\|19\| 41$	$6\|50\| 26$ i．e．Friday at $50^{\text {gh }} 25^{\text {vig }}$
12	U．Phālguṇī	$0\|30\| 45+06\|05\| 42$	$6\|36\| 27$ i．e．Friday at $36^{\text {gh }} 26^{\text {vig }}$
13	Hasta	$0\|30\| 45+05\|43\| 43$	$6\|14\| 28$ i．e．Friday at $14^{\text {gh }} 27^{\mathrm{vIg}}$
14	Cītrā	$0\|30\| 45+05\|11\| 44$	$5\|42\| 29$ i．e．Thursday at $42^{\text {gh }} 288^{\text {vig }}$
15	Svātī	$0\|30\| 45$＋04｜36｜45	$5\|07\| 30$ i．e．Thursday at $7^{\text {gh }} 29^{\text {vig }}$
16	Viśākhā	0｜30｜45＋03｜56｜46	$4\|27\| 31$ i．e．Wednesday at $27^{\text {gh }} 30^{\text {vig }}$
17	Anurādhā	0｜30｜45＋03｜05｜47	$3\|36\| 32$ i．e．Tuesday at $36^{\text {gh }} 31^{\text {vig }}$
18	Jyeş̧hā	0｜30｜45＋02｜12｜48	$2\|43\| 33$ i．e．Monday at $43^{\text {gh }} 32^{\text {vig }}$
19	Mūlā	$0\|30\| 45+01\|17\| 11$	$1\|47\| 56$ i．e．Sunday at $47^{\text {gh }} 55^{\text {vg }}$
20	Pūrvāşāḍhā	0｜30｜45＋00｜19｜50	$0\|50\| 35$ i．e．Saturday at $50^{\text {gh }} 34^{\text {vig }}$
21	Uttarāşāḍha	$0\|30\| 45+06\|19\| 51$	$6\|50\| 36$ i．e．Friday at $50^{\text {gh }} 35^{\text {vig }}$
22	Śravaña	0｜30｜45＋05｜26｜00	$5\|56\| 45$ i．e．Thursday at $56^{\text {gn }} 44^{\text {vig }}$
23	Dhaniş̧̧hā	$0\|30\| 45+04\|30\| 00$	$5\|00\| 45$ i．e．Thursday at $0^{\text {gh }} 44^{\text {vig }}$
24	Śatabhişaj	0｜30｜45＋03｜40｜00	$4\|10\| 45$ i．e．Wednesday at $10^{\text {gn }} 44^{\text {vig }}$
25	Pūrvābhādrā	$0\|30\| 45+02\|51\| 00$	$3\|21\| 45$ i．e．Tuesday at $21^{\text {gh }} 44^{\text {vig }}$
26	Uttarābhādrā	$0\|30\| 45+02\|11\| 00$	$2\|41\| 45$ i．e．Monday at $41^{\text {gh }} 44^{\text {vig }}$
27	Revatī	$0\|30\| 45+01\| \| 42 \mid 00$	2｜12｜45 i．e．Monday at $12^{\text {gh }} 44^{\text {vig }}$

Table 10: The Sun's entry into the different nakșatras for śaka year 1939.

SI. No.	Nakșatras	abdapa+kșepaka	Weekday, ghați and vighați of the Sun's entry into Nakșatras
1	Aśvinī	$5\|54\| 27+00\|00\| 00$	$5\|54\| 27$ i.e. Thursday at $54^{\text {gh }} 27^{\text {vig }}$
2	Bharaṇī	$5\|54\| 27+06\|41\| 34$	$5\|36\| 01$ i.e. Thursday at $41^{\text {gh }} 34^{\text {vig }}$
3	Krttikā	$5\|54\| 27+06\|30\| 00$	$5\|24\| 27$ i.e. Thursday at $24^{\text {gh }} 27^{\mathrm{vig}}$
4	Rohinī	$5\|54\| 27+06\|24\| 35$	$5\|19\| 02$ i.e. Thursday at $19^{\text {gh }} 02^{\text {vig }}$
5	Mrgaśira	$5\|54\| 27+06\|23\| 36$	$5\|18\| 03$ i.e.Thursday at $18^{\text {gh }} 3^{\text {vig }}$
6	Ārdrā	$5\|54\| 27+06\|24\| 37$	$5\|19\| 04$ i.e. Thursday at $19^{\text {gh }} 4^{\text {vig }}$
7	Punarvasu	$5\|54\| 27+06\|29\| 38$	$5\|24\| 05$ i.e. Thursday at $24^{\text {gh }} 5^{\text {vig }}$
8	Puşya	$5\|54\| 27+06\|32\| 39$	$5\|27\| 06$ i.e. Thursday at $27^{\text {gh }} 6^{\text {vig }}$
9	Āśleşa	$5\|54\| 27+06\|32\| 40$	$5\|27\| 07$ i.e. Thursday at $27^{\text {gh }} 7^{\text {vig }}$
10	Makhā	$5\|54\| 27+06\|30\| 04$	$5\|24\| 31$ i.e. Thursday at $24^{\text {gh }} 31^{\text {vig }}$
11	Pubba	$5\|54\| 27+06\|19\| 41$	$5\|14\| 08$ i.e. Thursday at $14^{\text {gh }} 8^{\text {vig }}$
12	Uttara	$5\|54\| 27+06\|05\| 42$	$5\|00\| 09$ i.e. Thursday at $0^{\text {gh }} 9^{\text {vig }}$
13	Hasta	$5\|54\| 27+05\|43\| 43$	$4\|38\| 10$ i.e. Wednesday $38^{\text {gh }} 10^{\text {vig }}$
14	Cītrā	$5\|54\| 27+05\|11\| 44$	$4\|06\| 11$ i.e. Wednesday at $6^{\text {gh }} 11^{\text {vig }}$
15	Svātī	$5\|54\| 27+04\|36\| 45$	$3\|31\| 12$ i.e. Tuesday at $31^{\text {gh }} 12^{\text {vig }}$
16	Viśākhā	$5\|54\| 27+03\|56\| 46$	$5\|51\| 13$ i.e. Thursday at $51^{\text {gh }} 13^{\text {vig }}$
17	Anurādhā	$5\|54\| 27+03\|05\| 47$	$2\|00\| 14$ i.e. Monday at $0^{\text {gh }} 14^{\text {vig }}$
18	Jyeşţhā	$5\|54\| 27+02\|12\| 48$	$1\|07\| 15$ i.e. Sunday at $7^{\text {gh }} 15^{\text {vig }}$
19	Mūlā	$5\|54\| 27+01\|17\| 11$	$0\|11\| 38$ i.e. Saturday at $11^{\text {gh }} 388^{\text {vig }}$
20	Pūrvāşāḍha	$5\|54\| 27+00\|19\| 50$	$6\|14\| 17$ i.e. Friday at $14^{\text {gh }} 17^{\text {v19 }}$
21	Uttarāşāḍha	$5\|54\| 27+06\|19\| 51$	$5\|14\| 18$ i.e. Thursday at $14^{\text {gh }} 18^{\text {vig }}$
22	Śravaṇa	$5\|54\| 27+05\|26\| 00$	$4\|20\| 27$ i.e. Wednesday at $20^{\text {gh }} 27^{\text {vig }}$
23	Dhaniş̧hā	$5\|54\| 27+04\|30\| 00$	$3\|24\| 27$ i.e. Tuesday at $24^{\text {gh }} 27^{\text {vig }}$
24	Śatabhişaj	$5\|54\| 27+03\|40\| 00$	$2\|34\| 27$ i.e. Monday at $34^{\text {gh }} 27^{\text {vig }}$
25	Pūrvabhādra	$5\|54\| 27+02\|51\| 00$	$1\|45\| 27$ i.e. Sunday at $45^{\text {gh }} 27^{\text {vig }}$
26	Uttarābhādra	$5\|54\| 27+02\|11\| 00$	$1\|05\| 27$ i.e. Sunday at $5^{\text {gh }} 27^{\text {vig }}$
27	Revatī	$5\|54\| 27+01\|42\| 00$	$0\|36\| 27$ i.e. Saturday at $36^{\text {gh }} 27^{\text {vig }}$

Table 11: Duration of the Sun's entry into different nakșatras.

SI. No.	Nakșatras	Makarandasāriņī (MKS)	Vākya	Sūryasiddhāntha (SS)
1	Aśvinī	13.69277	13.69011232	13.70138
2	Bharanī	13.80722	13.7963388	13.80175
3	Krıtikā	13.90972	13.88810456	13.88827
4	Rohinī	13.98361	13.9604625	13.95755
5	Mrgaśira	14.016944	14.00951178	14.0066
6	Ārdrā	14.083611	14.03260813	14.0328
7	Punarvasu	14.050277	14.02850644	14.02755
8	Puşya	14.00027	13.99742781	13.99417
9	Āśleşa	13.95666	13.94104772	13.93876
10	Makhā	13.82694	13.86240562	13.86398
11	Pubba	13.666694	13.76574113	13.77291
12	Uttara	13.63388	13.65626546	13.66915
13	Hasta	13.466944	13.53988047	13.55669
14	Cītrā	13.416944	13.4228605	13.44018
15	Svātī	13.3336111	13.31151413	13.32495
16	Višākhā	13.1502777	13.21184408	13.21707
17	Anurādhā	13.11694	13.12922358	13.12298
18	Jyeş̧̧hā	13.073056	13.06810672	13.04916
19	Mūlā	13.044167	13.03178833	13.00148
20	Pūrvāşạ̄ha	13.00028	13.02222634	12. 98678
21	Uttarāşạ̧̄ha	13.1025	13.03993625	13.01275
22	Śravaṇa	13.06667	13.08396331	13.06879
23	Dhaniş̧̧hā	13.166667	13.151934	13.14937
24	Śatabhişaj	13.183333	13.24018401	13.2483
25	Pūrvabhādra	13.333333	13.34395575	13.35906
26	Uttarābhādra	13.516667	13.45765488	13.47526
27	Revatī	12.3	13.57515183	13.59108

6.3 Derivation for the Durations of the Sun's Entry into Different Nakșatras

The duration of Sun's entry into nakṣatra = the mean duration $\left[\frac{13.5}{2 \pi \times S D M}\left\{\sin M K_{\text {end }}-\sin M K_{\text {beg }}\right\}\right]$
where $M K_{\text {end }}$ and $M K_{\text {beg }}$ are mandakendras of the Sun at the end and at the beginning of a nak-
satra respectively and SDM is Sun's daily motion. Since the mean sidereal solar year is 365.2587565 days, the mean duration of a nakșatra $=365.2587565 / 27=13.52810209=$ 13|31|41.17days.

Table 11 compares the reported duration of the Sun's entry into different nakṣatras, as listed in the MKS, Vākya and SS.

7 CONCLUDING REMARKS

In the preceding sections we have discussed in detail the procedures for determining the
(1) beginning of the sidereal solar year for any given śālivāhanaśaka year i.e. the Meśasankrānti of that year;
(2) weekdays, ghatis and vighatis of the Sun's entry into each raśi;
(3) durations of the 12 solar months;
(4) weekdays, ghatis and vighatis of Sun's entry
into each of 27 naksatra; and
(5) duration of the Sun's stay in each naksatra.

These results, according to Makarandasāriṇī, are compared with those in the Süryasiddhānta, Vākya and Ganakānanda and modern computations.

8 ACKNOWLEDGEMENTS

We express our indebtedness to the History of Science Division, Indian National Science Academy (INSA) in New Delhi for sponsoring the research project of Dr S.K. Uma, Dr Padmaja Venugopal and Dr K. Rupa under which the present paper was prepared.

9 BIBLIOGRAPHY

Bag, A.K., 1979. Mathematics in Ancient and Medieval India. Vāranāsī, Chowkamba, Orientalia.
Ganakananda. Sanskrit text in Telugu script edited by Vella Lakshmi Narasimha Sastri. Machalipatnam, published by the author (reprinted in 2006).
Jyotïrmimāmsa of Nilakantha Somayāji. Edited by K.V. Sarma. Hoshiarpur, V.V.B. Institute of Sanskrit \& Indological Studies, (1977).
Makarandaprakāśa. Pandit by Lașaṇlāla Jhā. Vāraņāsī, Chaukhambā Surabhāratī Prakaśan (1998).
Mảkarandasārinī. Commentary by Acharya Ramajanma Mishra. Varanasi, Madālasā Publications.
Makarandasārinī. Commentary by Sri Gangadhara Tandan. Bombay, Sri Venkateshwara Press.
Pingree, D., 1968. Sanskrit Astronomical Tables in the United States (SATIUS). Philadelphia, Transactions of the American Philosophical Society.
Pingree, D., 1973. Sanskrit Astronomical Tables in England (SATE). Madras, The Kuppuswami Sastri Research Institute.
Rao, S. Balachandra, 2000. Ancient Indian Astronomy - Planetary Positions and Eclipses. Delhi, B.R. Publishing Corporation.
Rao, S. Balachandra, 2005. Indian Mathematics and Astronomy - Some Landmarks. Revised Third Edition. Bangalore, Bhavan's Gandhi Centre of Science \& Human Values.
Rao, S. Balachandra, 2016. Indian Astronomy - Concepts and Procedures. Bengaluru, M.P. Birla Institute of Management.
Rao, S. Balachandra, and Uma, S.K., 2006. Grahalāghavam of Ganeśa Daivajña - an English exposition, mathematical explanation and notes etc. Indian Journal of History of Science, 41(1), S1-S88; 41(2), S89-S183; 41(3), S185-S315; 41(4), S317S415.
Rao S. Balachandra, and Uma, S.K., 2007 \& 2008. Karaṇakutūhalam of Bhāskarācārya II - an English
translation with mathematical notes. Indian Journal of History of Science, 42(1), xv + S1-S41; 42(2), S43-S108;43(1), S109-S150;43(3), S151- S220.
Rao, S. Balachandra, and Venugopal, P., 2009. Transits and Occultations in Indian Astronomy. BangaIore, Bhavan's Gandhi Centre of Science \& Human Values.
Rao, S. Balachandra, Uma, S.K., and Venugopal, P., 2004. Mean planetary positions according to Grahalāghavam. Indian Journal of History of Science, 39, 441-466.
Rupa, K., Venugopal, P., and Rao, S. Balachandra, 2013. An analysis of the Mandaphala tables of Makaranda and revision of parameters. Ganita Bharatī, 35, 221-240.
Rupa, K., Venugopal, P., and Rao, S. Balachandra, 2014. Makarandasārinī and allied Saurapakșa tables - a study. Indian Journal of History of Science, 49, 186-208.
Sodāharaṇa Makarandasāriṇī. Commentary, udāharaņam, by Viśvanātha Daivajña. Śrī Bombay, Venkateśvara Press (1913).
S.K. Uma has an M.Sc. from Bangalore University and Ph.D. from Manipal University. Currently she is a Professor in the Department of Mathematics at the Sir Mokshagundam Visvesvaraya Institute of Technology in Bangalore. She has been working in the field of Indian astronomy for the past two decades and has
 presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. Her most recent published paper is on the Ahargana according to Makarandasāriṇī, and other Indian astronomical texts. She worked on the INSA research project "MAKARANDASĀRIṆĪ - English Exposition, A Critical Analysis and Comparison with Other Indian Astronomical Tables". She is guiding Ph.D. candidates in the field of astronomy, and has authored three books on Indian Astronomy.

Padmaja Venugopal has a Ph.D. from Bangalore University. Currently she is Professor and Head of the Department of Mathematics at the SJB Institute of Technology in Bangalore. Her recent publications include Eclipses, Transits, Occultations and Heliacal Rising and Setting of Planets. She has been working in the field of Indian astronomy for the past two
 decades, and has presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. She worked on the INSA research project 'Comparative Study of Planetary Models in Respect of Epicycles in Classical Indian Astronomy vis-à-vis Ptolemaic and Copernican Models'. Currently she is working on another INSA project: 'Gankananda - English Translation, a Critical Analysis \& Comparison with other Indian Astronomical Tables'. She is guiding Ph.D. candidates in the field of astronomy. She has authored books on Eclipses in Indian Astronomy and

Transits and Occultations in Indian Astronomy. She presented a stand-alone paper on "Eclipses - inscriptional and literary references, a survey" at the 25th International Congress of History of Science and Technology, in Rio de Janeiro, Brazil, in July 2017.

Dr K. Rupa has an M.Sc. from Bangalore University and a Ph. D. from Anna University, Chennai. The title of her doctoral thesis is: Planetary Models in Classical Indian Astronomy in Comparison with Ptolemaic, Copernican and Keplerian Models - A Mathe-
 matical Analysis. Currently she is an Associate Professor in the Department of Mathematics at the Global Academy of Technology in Bangalore. She has presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. Currently she is working on the INSA research project 'Occultation and Transits in Indian Astronomy - A Mathematical Analysis'. She has co-authored the book Bharathada Suprasidda Ganitajnaru (Famous Indian Mathematicians).

Professor S. Balachandra Rao has an M.Sc. (Mathematics) from the University of Mysore and a Ph.D. (Fluid Mechanics) from Bangalore University. He served at the National Colleges at Gauribidanur and Bangalore, teaching mathematics for 35 years, and retired in 2002 as Principal. Currently he is (1) Hon-
orary Director, Gandhi Centre of Science and Human Values, Bharatiya Vidya Bhavan, Bengaluru; (2) a Member of the National Commission for History of Science, INSA, New Delhi; and (3) an Honorary Senior Fellow at the National Institute of Advanced Studies (NIAS) in Bengaluru. Professor Rao has been researching in the field of classical Indian astronomy since 1993 under successive research projects from INSA. He has authored, singly and jointly, quite a few papers in reputed journals and books on Indian mathematics and astronomy. The books published so far are about 30, half in English and the remainder in
 Kannada. The more popular ones among them are: (1) Indian Mathematics and Astrono-my-Some Landmarks; (2) Indian Astronomy-Concepts and Procedures; (3) Eclipses in Indian Astronomy; (4) Transits and Occultations in Indian Astronomy [titles (3) and (4) were coauthored by Dr Padmaja Venugopal]; (5) Grahalaghavam of Ganesha Daivajna, English Translation and Notes; (6) Karanakutuhalam of Bhaskara II, English Translation and Notes [titles (5) and (6) were co-authored by Dr S.K. Uma]; (7) Astrology-Believe it or Not?; (8) Traditions, Science and Society, etc. While title (7) was translated into the Kannada and Marathi languages, title (8) was rendered into Kannada, Telugu and Malayalam versions. The Kannada versions of books (7) and (8) have won awards as "The Best Works of Rational Literature" from the Kannada Sahitya Parishat (Kannada Literary Authority).

