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Abstract:  Two methods of setting clocks to show correct time during the 17th century by French Jesuits in 
China are investigated and their computations and accuracy are analysed.   These methods were used to 
rectify the clocks used for timings of eclipses of the Galilean moons or for lunar eclipses that in turn were used 
to determine geographical longitudes by Jesuit missionaries in Siam and China.  It is found that the calculations 
needed, in spite of being quite complicated, were well done and very accurate. 
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1   INTRODUCTION 
 

In the seventeenth century logitude determin-
ations were of great scientific and commercial 
interest and demand as the future colonial 
states of Europe started to explore new 
routes to countries in the Far East and the 
Americas.  Longitude can be measured by 
timing an event that is simultaneous for differ-
ent locations on the Earth but will occur at 
different local times.  The time difference is 
proportional to the difference in longitude, 
such that 1 hour of time difference corres-
ponds to 15° of longitude difference.   
 

There are different kinds of events that 
were suitable at the time, one of which was 
timing ingresses and egresses of the then 
discovered satellites of Jupiter behind or in 
the shadow of the mother planet.  These 
events were carefully observed and timed by 
observatories in England and France and the 
renowned astronomer Giovanni Cassini (1625 
–1712) in France made tables and ephem-
erides that made it possible to calculate and 
predict the times of these events.  Lunar 
eclipses were more rare events that could be 
used.  Also the method of measuring lunar 
distances (de Grijs, 2020) from reference 
stars could be used but there is no indication 
the this method was ever used by the French 
Jesuits in China.  The French Jesuit Guy Ta-
chard (1651–1712), determined the longitude 
of Cape Town timing the eclipse of the Jovian 
moon Io in the night of 2 June 1685 and of 
Lop Buri in Siam (present-day Thailand) using 
the lunar eclipse of 11 December 1685 (see 
Gislén, 2004; Gislén et al., 2018; Orchiston et 
al., 2016; Tachard, 1981).  An even rarer event 
of this kind is documented in the records, the 
transit of Mercury on 10 October 1689, which 
was observed and timed from Canton, China, 
by Father Jean de Fonteney (1643–1710) at 

about 3 o’clock in the afternoon (Anonymous, 
1729: 825). 
 

During the seventeenth and eighteenth 
centuries, the time used in astronomy was 
what we today call apparent local solar time: 
a correct clock showing apparent time at  the 
specific location would show 12 hours at noon 
when the Sun was precisely due south.  The 
time used today is mean solar time based on 
a fictive mean Sun.  The difference between 
the apparent and mean time is called the 
equation of time, but it will not appear in this 
paper as mean time is not used.  The reason 
for using apparent local time was that the 
mechanical clocks of the time were quite un-
reliable, sometimes being fast or slow by sev-
eral minutes or more per day.  

 

There was then a need to rectify the 
clocks at regular intervals to ensure that they 
were in phase with the Sun.  The most direct 
way was then to use the true Sun as the time-
keeper.  In order to have the required precis-
ion in the longitude determinations it was 
necessary to have correct timings of astro-
nomical events with an accuracy of a fraction 
of a minute.  There were two different meth-
ods in use by the French Jesuits in China at 
the time for rectifying a clock as described in 
detail below. 

 

French Jesuit astronomer Father Font-
eney was  asked by King Louis XIV to set up 
a mission to China in order to spread French  
and Catholic  influence at the Chinese court.  
Fonteney assembled a group of five other 
Jesuits to accompany him, all highly skilled in 
the sciences: Joachim Bouvet (1656–1730), 
Jean-François Gerbillon (1654–1707), Louis-
Daniel Lecomte (1655–1728), Claude de Vis-
delou (1656–1737) and the afore-mentioned 
Guy Tachard.  Before setting out for their 
destination in 1685, they were admitted to the 
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Royal French Academy of Sciences and were 
trained and commissioned to carry on astro-
nomical observations in order to determine 
the geographical positions of the various 
places they were to visit and to collect various 
scientific data, one of the important tasks of 
the Jesuit team.  

 

The Jesuit Fathers, after being provided 
with all necessary scientific instruments and 
up-to-date tables1 from Paris Observatory, 
sailed from Brest, in the morning of 3 March 
1685, with Père Fonteney as leader (de 
Chaumont, 1733; Tachard, 1686).  They were 
on board the King's warship Oiseau and es-
corted by the royal frigate Maligne.  On board 
were also the Ambassador of the French King 
to Siam, Chevalier Alexandre de Chaumont 
(1640–1710) and Abbé François-Timoléon 
de Choisy (1644–1724) both of whom later 
wrote accounts of their voyage (de Chaumont, 
1733; de Choicy, 1741).  The ships made a 
stop for a week in Cape Town and then 
continued their voyage.  After spending some 
time in Siam, where Tachard remained, the 
group continued and finally arrived in Beijing 
on 7 February 1688.  The Jesuits were well 
received by the Kangxi Emperor, 康熙 (1662–
1723; Figure 1), third Emperor of the Qing 
Dynasty, who had been favourably impressed 
by Western science and earlier visits by Euro-
peans.  Fathers Bouvet and Gerbillon stayed 
in Beijing, teaching the Emperor mathematics 
and astronomy, while the other Jesuit astron-
omers moved to different locations in China. 
 
2   THE SETTING METHODS 
 

The first method was timing and measuring 
the altitude, a, of a reference star.  The alt-
itude was corrected for refraction.  Needed 
was also the geographical latitude, f, of the 
site, measured beforehand and the declinat-
ion of the star, δ, found in a table.  The geo-
graphical latitude was determined by measur-
ing of the altitude of the upper limb of the Sun 
when it passed the meridian and then correct 
the altitude for refraction and for the semi-
diameter of the Sun in order to determine the 
true altitude of the centre of the Sun, A.  With 
the known current declination, D, of the the 
Sun, the geographical latitude was then cal-
culated by the simple formula f  = 90° – (A – 
D).  Also altitude measurements of stars 
could in the same way be used to determine 
the latitude.  Fonteney, for example, made 17 
such altitude determinations with a 26-inch 
quadrant between 25 April and 28 December 
1689 from the north-west Chinese town Si-
nghan-fu (modern Xi’an in the province of 
Shensi/Shaanxi) in order to determine the 

latitude of the site.  His average value 34° 16′ 
30′′ N, is very close to the modern value of 34° 
17′. 
 

The hour angle, h, of the star is the angle 
between the meridian plane and a plane de-
fined by the local vertical and the direction to 
the star.  The hour angle is zero when the star 
is in the meridian and counted positive if the 
star is west of the meridian.  We have a re-
lation between these quantities 
 

sin a = sin f  sin δ + cos f cos δ cos h             (1) 
 

from which we can solve for the hour angle h 
once the other quantities are known.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The Kangxi Emperor in Court dress 
(https://en.wikipedia.org/wiki/Yongzheng_Emperor#/me
dia/File:Portrait_of_the_Yongzheng_Emperor_in_Court
_Dress.jpg). 

 
With α, the right ascension of the star 

taken from a table, the sidereal time Θ is giv-
en by 
 

Θ = ±h + α                      (2) 
 

The solar right ascension, as, that is not 
constant but slowly varying, can be interpol-
ated from a table for the time of the day and 
the sidereal time can be eliminated and we 
finally get the solar hour angle hs in known 
quantities, 
 

hs = Θ – αs = ± h + α – as                                 (3) 
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The method can also be used for the Sun it-
self when α = αs and simply hs = h. 
 

As the solar right ascension was given to 
the Jesuits in the form of day tables for the 
longitude of Paris, they had to interpolate for 
the local time of their observation site that 
corresponded to the local Paris time.  In order 
to do that they needed to already have some 
idea of what the longitude difference was or 
without that had to make successive approxi-
mations, for instance by first using the right 
ascension for their local time, calculate a 
longitude difference, correct the right ascen-
sion for the time difference and so on until 
their result converged.  The Jesuits in China 
seem to have applied a standard time differ-
ence of 7 hours for this.  

 

Comparing the calculated solar hour angle 
(converted to time from noon by multiplying 
by 6 and dividing by 90) with the time of the 
clock will then give the clock correction.  Us-
ing this method with a star is obviously re-
stricted to night time.  

 

The second setting method uses timings 
of two equal altitudes of the Sun, one before, 
the other after noon and corrected for refract-
ion.  Normally, the altitude of the upper limb 
of the Sun was used but for example Tachard 
in Cape Town used the upper solar limb in the 
morning and the lower limb in the afternoon.  
He then had to correct for the diameter of the 
solar disk.  The telescope used for observat-
ion could swing around a vertical axis be-
tween the two azimuthal directions and had to 
be carefully set up and levelled.  Noon would 
at first be assumed to be in the middle be-
tween the two timings.  However, the declin-
ation of the Sun changes a little between the 
two timings and the time after noon has to be 
corrected for that. 

 

Father Fonteney describes his method 
(translated from Anonymous, 1729: 860): 

 

Of all the methods that one uses to cor-
rect the clock by observations of the Sun, 
observed before and after noon, I have 
chosen the following as I am more used 
to it than to other methods. 

 

I take the difference between the 
times of observation in the morning and 
in the afternoon.  I change the half of this 
difference to degrees of the parts of the 
great circle that gives me how much the 
Sun, at the morning observation, is dist-
ant from the meridian, more or less pre-
cisely.  With this distance [h], the  comple-
ment of the altitude of the pole (90°– f ) 
and of the corrected altitude (90°– a) of 
the upper limb of the Sun, I find what  is 
called the solar angle (ξ ), by this analogy: 

 

As the sine of the complement of the 
corrected altitude of the Sun is to the sine 
of the complement of the altitude of the 
pole; so is the sine of the distance of the 
Sun from the meridian (the hour angle) to 
the solar angle. (Rule 1) 

 

I then take the difference of the dec-
lination of the Sun in 24 hours on the day 
of observation of which I take the part of 
the difference in declination proportional 
to the interval of observation before and 
after noon, to which, as the Sun describes 
a parallel with the equator, I add (i.e. div-
ide by cos δ )  the proportion coming from 
difference between the equator and the 
parallel of the day: and with this differ-
ence of declination increased in this way 
I have: 

 

As the sine of the solar angle is to the 
part of the difference in declination, pro-
portional to the interval between the ob-
servations, increased  by the proportion  
of the equation to the parallel of the day: 
so is the sine of the complement of the 
solar angle to parts of 360° (hour angle, 
which, reduced to time measure, gives 
the correction to the time of observation 
in the afternoon. (Rule 2)  

 
3   MATHEMATICAL FORMULATION 
 

Fonteney’s rules can be formulated in mathe-
matical language using spherical geometry 
and Figure 2 to derive his rules. 
 

Z is the local zenith, P the Northern Cel-
estial Pole.  S and S' are the locations of the 
Sun with slightly different declinations but the 
same altitude.  ZS = ZS' are zenith distances 
of the Sun.  The great circle through PZ is the 
meridian.  SS' is part of a local equal altitude 
parallel circle.  S'A is a part of a declination 
parallel circle.  Halving the time interval be-
tween the morning and afternoon timings will 
give a first approximation of the hour angle h.  
The angle ZPS is the afternoon hour h angle 
of the Sun.  The angle ZSP is the solar angle 
ξ.  ∆h is the correction to the hour angle due 
to change in the declination of the Sun be-
tween the timings.  SA is the change in dec-
lination ∆δ between the two timings.  S'A is 
the projection of the hour angle change on the 
declination parallel: ∆h cos δ. 

 

For small changes we can consider the 
triangle SS'A to be a plane triangle.  The 
angle SS'A is equal to ξ. 

 

The sine theorem applied to the spherical 
triangle ZSP gives Rule 1 above: 
 

sin h / cos a = sin ξ / cos f                                     (4) 
 

With the hour angle h, the altitude a, and  
the geographical latitude f known, this deter- 
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Figure 2: The celestial sphere (diagram: Lars Gislén). 
 
mines the solar angle ξ. 
 

Triangle SS'A gives Rule 2:    
 

sin ξ / ∆δ = cos ξ / (∆h cos δ) 
 

We can now solve for the correction to the 
hour angle:  

 

∆h = ∆δ / (tan ξ cos δ)                     (5) 
 

If the change in declination is positive, the cor-
rection to the hour angle will be applied neg-
ative and vice versa.  The correction ∆h is 
small, less than one minute. 

 

If the morning and the corrected after-
noon timings are T1 and T2 respectively, true 
noon according to the uncorrected clock is 
given by T = T1 + (T2 – T1) / 2, and the clock 
correction is 12 hours – T. 
 
4   PRACTICAL CALCULATION 
 

An example of a clock error calculation using 
the first method is shown in Figure 3.  It was 
made in preparation for the emersion/egress 
of Io just before midnight as observed from 
the Chinese town of Hoai-nghan (present day 
Huai’an in the province of Jiangsu) on 7 
October 1689.  The stars observed were α 
Tauri Aldebaran) and α Aurigae (Capella).  
Both stars were east of the meridian. The 
uncorrected clock time of the measurement of 
the altitude of the first one was 11:46:30 (PM).  
The first item in the calculation is the altitude 
of the star corrected for refraction.  Then fol-
lows the declination of the star, its right as-
cension, the right ascension of the Sun, inter-

polated from tables for the long-itude of Paris 
with a longitude time difference of seven 
hours.  Then the true time is calculated and it 
is found that the clock is 9 minutes and 23 
seconds fast.  With a second measurement at 
11:51:0 using Capella the calculation gives 
that the clock is fast by 9 minutes 12 seconds.  
The value used to correct the time of the 
emersion was the average, 9 minutes 17 sec- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: The clock error calculation for Huai’an on 7 
October 1689 (after Anonymous, 1729: 782). 
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onds.  The average of seven similar pairs of 
timings finally gives a longitude of Huai’an of 
118° 50′ E of Greenwich as compared to the 
modern value of 119° 1′ E. 
 

Figure 4 shows the details of a correction 
calculation taken from Anonymous (1729) us-
ing the method with two equal altitudes of the 
Sun on 12 July 1689.  The event prepared for 
was the immersion/ingress of the Galilean 
moon Io behind Jupiter on the following night, 
observed from the town of Sian Fu.  The calc-
ulations were done with a precision of sec-
onds, often with fractions of seconds.  There  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Details of a correction calculation for two equal 
altitudes of the Sun taken on 12 July 1689 (after Anony-
mous, 1729: 860–861). 
 
is one typographical error: the number 54 on 
the next-to-bottom-line should be 59, but 
otherwise all numbers are correct.  The calcu-
lation follows exactly Fonteney’s scheme.  It 
was found that the clock was slow by 40 
seconds and that the corrected local apparent 
time of the immersion was 2 hours 36 minutes 
55 seconds after midnight on 13 July.  Ac-
cording to Cassini’s ephemerides for the 
Jovian moons, the apparent local time of the 
immersion in Paris was 7 hours 31 minutes 0 
seconds on the evening of 12 July.  The time 
difference, 7 hours 5 minutes and 55 sec-
onds, translates into a longitude difference of 
106° 28′ 49′′ east of Paris.  With a modern 
longitude of 2° 20′ 14′′ E of the Paris Obser-
vatory this gives a longitude of 108° 49′ 3′′ E 

from Greenwich, not far from the correct mod-
ern value of 108° 58′ E.  The arc second pre-
cision is illusory.  

 

For 14 September 1689 there is a calcu-
lation of the true time of the emersion of the 
Jovian moon Io as observed from Huai’an 
(Anonymous, 1729: 779).  However, the ob-
server (Father François Noël) notes that the 
longitude difference with Paris that he derives 
deviates from what several other observers 
had obtained earlier, and he concludes that 
the observed moon must have been one of 
the other satellites of Jupiter.  Indeed, it can 
be shown that the satellite he observed was 
Ganymede.   
 
5   CONCLUDING REMARKS 
 

Anonymous (1729) reports only one example 
using the first method and the altitude of the 
Sun.  There are 14 calculations using the 
altitudes of bright stars: α Lyrae (Vega), α 
Tauri (Aldebaran), α Aquilae (Altair), α Auri-
gae (Capella), α Orionis (Betelgeuse), α Can-
is Major (Sirius), and β Orionis (Rigel).  For 
each set of timings a selection of two stars 
was used.  There are six measurements on 
different dates using timings of equal altitudes 
of the Sun before and after noon, each of 
them having three pair of timings with slightly 
different altitudes. 
 

The calculations to establish the clock 
corrections are, especially with the second 
method, quite time-consuming and difficult to 
do by hand using the tools available at the 
seventeenth century and are also prone to 
errors of calculation.  However, checking the 
calculations with a modern computer shows 
that the Jesuits were extremely good at their 
work.  In the more than thirty records in 
Anonymous (1729) there are a few typo-
graphical errors, four of the calculations have 
a final error of more than 6 seconds, and none 
has an error greater than 8 seconds.  The 
average calculation error is a little more than 
one second.  In the timings of the events for 
finding the longitude, the clock correction 
would be determined close to or before and 
after the event and the used clock error at the 
time of the event was an interpolated value of 
these corrections. 

 

Using the derived event timings, the Jes-
uits were able to determine the longitudes of 
several locations in China with an error of the 
order of 10 arc minutes (Gislén, 2017).  The 
French Jesuits were greatly favoured by be-
ing able to make their measurements on terra 
firma, which enabled them to achieve a high 
precision in their measurements. 

 

Determination of the longitude at sea on 
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an unstable ship platform is another story and 
was a big problem far into the eighteenth 
century, with inexact longitude positions caus-
ing several serious disasters at sea (de Grijs, 
2017).  The English Parliament passed an act 
in 1714 with a reward of £20,000 for any 
person who could find a method to determine 
the longitude at sea with an accuracy better 
than one-half of a degree.  It was the English 
carpenter and clock-maker John Harrison 
(1693–1776) who finally succeeded in con-
structing a sufficiently accurate chronometer 
and eventually received about half the prize 
sum (Andrews, 1996).  
 
6   NOTES 
 

1. It  is  not  known  exactly  what  tables  the  
 

Jesuit brough with them on their 
missionbut we can be assured that they 
were the most modern French ones at the 
time with Paris Observatory then headed 
by the renowned astronomer Giovanni 
Cassini.   
 

The tables needed would have been 
tables of right ascension and declinations 
of stars and as well as tables (or means 
to compute) of the daily declinations of 
the Sun as well as time tables for the in-
gresses and egresses of the Galilean sat-
ellites for the longitude of Paris. 

 

At that time, declination and right as-
censions were known with an error less 
than one arc minute, the declination of 
the Sun even better. 
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