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1  INTRODUCTION 
 

Some of the traditional calculation procedures of 
South-East Asia appear at first sight to be 
impenetrable, a complicated jumble of figures 
accompanied by obscure labels usually of Pali 
derivation and of no explanatory value.  With 
some application and perseverance, however, 
and a constant awareness of error in the arith-
metic, it is often possible to unravel the reckon-
ing, a process that involves constructing what in 
modern terms would be the ‗right‘ answers as a 
means of isolating and being able to replicate 
what their ‗wrong‘ answers were.  In the course 
of analysis one becomes aware that in a pre-
telescopic age number was power and also that 
the procedures were cast in such a way that 
their mechanical operation led to results whose 
theoretical basis went without challenge.  But  
so did whatever anomalies and inconsistencies 
might creep into the reckoning.  A prime ex-
ample of this is where in the procedure leading 
to the mean reckoning of the Sun and the Moon 
it was the practice to subtract 3′ from the Sun‘s 
value and 40′ from the Moon‘s value.  This ad-
justment can clearly be seen to have been a 
longitudinal correction based upon Ujjain, the 
ancient Greenwich, and as a correction it was 
roughly appropriate for Burma; but it was used 
routinely and hence without comprehension 
across South-East Asia (see Eade, 1995).  An 
exception is the more modern Thandeikhta that 
only has a lunar correction of –52′ and so dev-
iates from this pattern. 
 

One of the more complex and interesting 
sets of procedure can be found in various 
Burmese documents that detail how the Sun‘s 
shadow length is to be calculated (for the pur-
pose of casting horoscopes) and by extension 
how a similar process is applied to the Moon.  
The Moon‘s shadow length appears early on (in 
the fifteenth century) in the ancient Burmese 

capital of Pagan
 
(Site 479, 21° 9′ 42″ N, 94° 54′ 

11″ E, Burmese Era 767 Kason 7 waning (20 
April 1405): ―Monday, early morning cock crow 3 
times, shadow of Moon 6 1/2 feet plus 4 hands, 
son born.‖), and at a time well before the revis-
ion of the system that displaced the Makaranta 
procedures by the Thandeikhta.  The evidence 
we have comes from a period that must post-
date this reform since consistently the shadow 
calculation adjusts for precession, though how 
far back the procedure stretches beyond the 
printed form in which some of the data is avail-
able cannot be assessed.  In what follows we 
give an account of the correct procedures in 
modern terminology, together with an indication 
of what was actually done. 
 

About ten years ago we discovered in a Bur-
mese astronomical text

 
(Mauk, 1971) a strange 

numerical table that was obviously connected 
with a shadow calculation.  The calculation was, 
however, badly corrupted and full of errors. Other 
texts that appeared also were corrupt.  One ob-
stacle was also that, as we eventually discov-
ered, the gnomon height was 7 units while the 
standard length for example in India is 8 or 12 
(Pingree, 1978).  Finally we obtained a printed 
text

 
(Thi, 1936) that had a list of intermediate 

calculation results that were sound and enabled 
us to recreate the calculation procedure. 
 

Our Burmese informant
 
(Ko Ko Aung, pers. 

comm., June 2011) indicates that many Burmese 
villages in older times had a gnomon set up and 
when a child was born the gnomon would have 
been consulted for the shadow length, then 
used as the basis for casting a horoscope.  
There was a corresponding calculation proced-
ure for the Moon, although given the difficulty of 
measuring in practice such shadows, one imag-
ines that ‗Moon shadow‘ values were purely 
notional.  The calculation system has the merit 
that it can be applied at any time irrespective of 
physical conditions, to say nothing of its assum-
ed superior accuracy because you are then 
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juggling with numbers and not using measure-
ment. 

 
2  FUNDAMENTALS 
 

In order to calculate the relation between time 
and shadow length you need some fundamental 
data.  First you need to know the date in order 
to calculate the longitudes of the Sun and the 
Moon.  Since Burmese astronomy, as in all 
parts of South-East Asian and India, uses sider-
eal longitudes, you have, in the more ‗modern‘ 
versions that we have investigated, to correct for 
precession.  
 

For your particular location you need also to 
know its latitude and the lengths of the day and 
night and finally the rising times for the different 
zodiacal signs at that place.  Time in Burmese 
astronomy, as in Hindu astronomy, is measured 
in nadis and vinadis (Burmese nayi and bizana), 
60 nadis being a day and night and 60 vinadis 
being a nadi. 

 
3  THE LONGITUDES 
 

As the calculation of true longitudes is some-
what complex we have placed an example in 
the Appendix. 

 
4  PRECESSION 
 

The Burmese used the Hindu system, where the 
difference between the tropical and sidereal long-
itudes is represented by a linear zigzag function 

with an amplitude of 27° and a period of 7,200 

years, the zero being in AD 412.  For years be-
tween AD 412 and AD 2212 it is +54″ per year.  
The Burmese allowed for precession by using 
the following algorithm, valid for the time interval 
above: 
 

1)  Convert the Burmese year to the Kaliyuga 
era by adding 3,739. 

2)    Add the era constant, 88. 
3)  Divide the result by 1,800 and save the 

remainder. 
4)   Multiply by 9 and divide by 10.  
5)  Divide the integer part of the result by 60.  

The integer part of the result is the degrees 
of the precession; the remainder is the arc 
minutes.  

6)   Multiply the remainder of the result in 4) by 
6 to get the precession in arc seconds. 

 

For details see the sample calculation below. 

 
5  LENGTH OF DAY AND NIGHT 
 

Using modern mathematical language, the 
ascensional difference or the difference A (plus 
or minus) in half a day from 6 hours/15 nadis is 
given by 
 

sinA = tan φ tan δ           (1) 

where φ is the geographical latitude of the lo-
cation and δ is the declination of the luminary, 
the Sun or the Moon.  A here is given in degrees 
with 90° = 6 hours = 15 nadis.  
 

The declination, δ, above is given by 
 

sin δ = sin λ sin ε           (2) 
 

where λ is the true longitude of the luminary, 
corrected for precession, and ε is the obliquity of 

the ecliptic, with the Hindu value of 24°.  The 

Moon is treated as though it has zero latitude. 
 

In practice the value of A, in vinadis, is given 
for a number of fixed locations in Burma as the 

three values for λ = 30°, 60° and 90° and inter-

mediate values are calculated by linear Interpol-
ation.  See the Appendix for an example. 
 

Once we know the difference, A, we can cal-
culate the length of one half day, D, by adding to 
or subtracting A from 6 hours or 15 nadis.  
 
6  RISING TIMES 
 

The rising times of the zodiacal signs can be 
calculated once we know the location, and again 
this is pre-calculated and displayed in graphical 
form as a diagram of rising times (see Figure 1 
and Table 1).  Figure 1 is set up for Amarapura, 
formerly a capital of Burma, and now in the 
southern part of the Mandalay conurbation. 
 
 
 
 
 
 
 
 
 
 

Figure 1 (left): Rising time diagram. 
Table 1 (right): Translation of numbers in Figure 1. 

 
In modern language these numbers are dif-

ferences of oblique ascension.  The Appendix 
shows how to calculate these numbers.   
 

The top segment is Aries and the other signs 
follow in anti-clockwise order.  Each sign seg-
ment gives the rising time of that sign expressed 
in vinadis.  
 
7  THE SOLAR SHADOW CALCULATION 
 

The Burmese shadow calculation uses a gno-
mon height, G, of 7 ‗feet‘, which usually is fur-
ther divided into 420 smaller units.  The equi-
noctial noon shadow, Seq, is given by G tan φ for 
the gnomon and is displayed as a number assoc-
iated with each listed location (see the Appen-
dix). 
 

The first part of the procedure is to calculate 
the noon shadow, Snoon, for the particular date.  
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This is given by the expression 
 

Snoon = │G tan(φ ― δ)│           (3) 
 

The vertical bars denote absolute value, skip-
ping the sign. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Table in Mauk (1971: 154). 

 

The Burmese method consists of giving a 
table of the phawâ, the differences between the 
noon shadow and the equinoctial noon shadow.  
The table gives the value of this difference of 

either luminary at longitudes 30°, 60°, 90° and 

270°, 300° and 330°, with symmetries 60° = 

120°, 30  ̊= 150°, 210˚ = 330° and 240° = 300°. 

Intermediate values are interpolated.  Once the 
phawâ is calculated, the noon shadow can be 
computed by subtracting the phawâ from the 
equinoctial  noon shadow if  the  longitude  of  the 

luminary is <180°, or else by adding it to the 

equinoctial noon shadow. 
 

The next step in the procedure is highly inter-
esting.  Doing an exact calculation of the rela-
tion between time and shadow is very compli-
cated, and remarkably the Burmese resort to a 
theoretical model.  As is usual in South-East 
Asian reckoning, theory becomes embedded in 
—effectively buried in—tables. Before the tables 
are examined it will be useful briefly to consider 
the model in general terms. 
 

At noon the shadow is shortest and of course 
equal to the noon shadow. The change in length 
of the shadow at other times, H, being the time 
counted from noon, will be zero at noon and 
infinite at sunset/rise.  The change can be mod-
elled by the mathematical expression 
 

H / (D – H) 
 

where D is the time from noon to sunrise/set.  
This expression is clearly zero when H = 0 and 
infinite when H = D, i.e., has the correct values 
as its boundaries.  We can multiply this expres-
sion by a multiplier, M, without distorting the 
boundary values. 

 

The Burmese model is now that the total 
shadow, S, is given by 

 

S = Snoon + [(M × H)  / (D – H)]                         (4) 
 

with a value of M suitably chosen to approxi-
mate the real shadow length for all times from 
noon to sunrise/set. 

 
Table 2: Translation of the numbers shown in Figure 2. 

 

                                                                          Nadis 2 4 6 8 10 12 14 16 18 

Pisces                  Aries                  Virgo                 Libra 4 5 6 6 6 5 4:20   

                          Taurus                   Leo 7 7 7 7 6 6 5 4  

                          Gemini               Cancer 8 8 8 7:30 7 7 6 5:30  4 

Scorpius        Sagittarius           Capricorn          Aquarius 2 3 4 5 5:40 5:40 5   

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Table in Thi (1936: 12). 

 
Table 3: Translation of numbers in Figure 3. 

 

Nadis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Capricorn   61 124 168 216 251 280 307 325 338 345 349 350 325    
Aqu Sag   63 133 176 220 250 280 305 321 331 335 337 337 310    
Pis Sco   79 134 187 232 267 291 309 320 324 325 320 312 301 288   
Aries Libra   89 162 236 283 312 330 339 340 335 328 317 303 286 267 268  
Tau Virgo 178 304 363 395 408 415 402 391 375 313 338 318 296 309 251  

Gem Leo 571 599 582 563 590 509 484 456 430 409 375 349 322 301 270 229 

Cancer 455 522 539 530 515 494 471 450 427 402 372 351 326 302 267 241 
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The multiplier, M, can be determined empiric-
ally or theoretically by inverting this expression 
where all the quantities in the right hand mem-
ber can be calculated or measured to give 
 

M = [(S – Snoon) × (D – H)] / H          (5) 
 

You would expect, for reasons of scale, that M 
would be of the order of the gnomon height, 7 or 
420, depending on the units used.  Unfortunate-
ly, it turns out that the multiplier, M, which may 
be expected to be constant, is in fact a function 
dependent on the geographical latitude, φ, the 
time, H, and the longitude, λ, of the luminary.  
The latitude dependence is rather slow and the 
Burmese use an M that is a reasonable aver-
age, approximately valid for any location in Bur-
ma; but they still have to deal with the depen-
dence on time and longitude.  The Burmese 
solve this by having a double-entry multiplier 
table, the entries being time difference from 
noon in the horizontal and longitude of the 
luminary in the vertical.  
 

We had available two printed text variants of 
this table, one by Mauk (1971: 154) and shown 
in Figure 2 (see, also, Table 2), and the other by 
Thi (1936: 12), which is shown in Figure 3 (and 
see Table 3 as well).  The table in Mauk is by com-
parison crude and condensed, with only four en-
tries for longitude and entries for time only for 
every second nadi.  The value for M in this table 
varies between 2 and 8.  The other version of 
the table uses a unit for M that is 60 times larger 
(G = 420) and has more entries for both longi-
tude and time. 
 

We do not know the original procedures us-
ed to create these tables, but we did a computer 
calculation of a table using Formula (5), above, 
and real shadow lengths for geographic latitude 

22°. The generated result, Table 4, is quite sim-

ilar to the Burmese table, the differences being 
small enough to suggest only minor variation in 
the original reckoning. 
 

Given the existence of a table for the mult-
iplier, M, the aim of the astrologer is to calculate 
time from the shadow.  If we solve Equation (4) 
above for the time H we get: 
 

H = [(S – Snoon) × D ] / [(S – Snoon) + M ]        (6) 
 

M now appears as an additional term.  
 

There is an obvious problem with the relation 
above.  M is a function of H, so to calculate H 

we need to know the value of H in order to know 
M.  The Burmese solution is to start with a de-
fault value of M = 7 and calculate a preliminary 
time H and then use this time H to get a better 
value of M from the table, insert it Formula (6) to 
get an improved value of H.  This is an inter-
esting application of successive approximations. 
 

In practice a mathematically-equivalent ex-
pression is used for Formula (6): 
 

H = D – {(D × M) / [(S – Snoon) + M]}        (6′) 
 

This mathematical procedure was turned into 
a series of steps to be learned by rote and in 
consequence some of the sources available to 
us go wildly astray in the elements they select 
for processing.  But even from these confused 
calculations it was possible to arrive at a good 
estimate of how the original procedure must 
have looked and we could use the intermediary 
calculation values in a printed text (Thi, 1936) to 
vindicate our estimate. 
 

The resulting time, H, is used to calculate back 
the shadow, in a reckoning that uses a modified, 
but mathematically-equivalent, version of Equa-
tion (4): 
 

S = Snoon – [(D × M) / (D – H)] – M        (4′) 

 
8  THE LUNAR SHADOW CALCULATION 
 

To begin with, this calculation is identical to that 
for the Sun.  It tacitly ignores the latitude of the 
Moon, as was the case also with the planets in 
astronomical tables.  Using the Moon‘s true 
longitude, corrected for precession, it is easy to 
calculate the length of the lunar ‗day‘ and ‗night‘.  
Using the formulae above from a measured or 
notional Moon shadow, the Burmese could calc-
ulate the corresponding time from the lunar 
‗noon‘,  the time of  the culmination of  the Moon.  
The problem is now to find the solar clock time 
of lunar noon. 
 

Knowing the longitude of the Moon will deter-
mine the location in the rising time chart of moon-
rise and moonset.  Lunar noon will be located 
midway in time from these points.  As the differ-
ence, A, of the solar day is known, the interval in 
time from sunset to the time instant 45 nadis 
after midnight, or 6pm, is known.  Also known is 
the longitude of the Sun, and thus the locations 
in the rising time chart of sunrise and sunset.  
This determines the point in the rising time chart  

 
Table 4: Computer-generated multiplier table 

 
 

 
 

Nadis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Capricorn   69 128 178 219 254 281 304 321 335 346 354 359 363    
Aqu Sag   69 127 176 216 249 275 296 312 324 333 339 343 346    
Pis Sco   72 132 181 220 250 273 290 302 310 315 317 317 316 315   
Aries Libra   92 165 220 258 284 301 311 316 318 317 313 309 303 296 288  
Tau Virgo 168 273 329 356 368 371 369 363 355 346 335 325 313 302 290  
Gem Leo 499 532 524 507 487 467 446 427 407 389 371 354 337 321 306 291 

Cancer 449 506 509 498 481 464 445 427 409 391 374 358 342 327 312 298 
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corresponding to the time instant 6pm.  Count- 
ing the rising times up to lunar noon will then 
give the clock-time instant of lunar noon.  Know-
ing this and the value of H will finally give the 
clock time instant corresponding to the given 
shadow. 
 

9  AN EXAMPLE 
 

The results of a shadow calculation are present-
ed in one of the available texts

 
(Thi, 1936).  On 

its last page (see Figure 4) the text gives a set 
of intermediary results of a Moon shadow 
calculation.  The date, given in the text, is 1297 
Pyatho 3 waning in the Burmese era, 9 January 
1936.   The  location  is  Amurapura.   A  shadow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Moon shadow calculation (after Thi, 1936. 25). 

 

length of 2 after lunar noon is also given in the 
text.  
 

Number format is sexagesimals, a :b :c  = a + 
b/60 + c/3600, except for longitudes where 
a :b :c  = a [zodiacal sign] + b [degrees] + c [arc 
minutes]. 
 

The rising time diagrams at the top have 
numbers 134:27 and 329:10 to their left.  We 
label the lines in the lower square A, B … T and 
translate the numbers: 
 

A 22:51 
B 9:18:6 
C 13:27:40  2 
D 16:32:20  5:0:0 
E 4:0:42   21:2:20 

F 16:24:6   168:53 
G 13:35:54  19:10:3 
H 0:7:36   2:45:57 
I 413322   34364772 
J 31944   49089 
K 3:27:46   2:5:37 
L 582 
M 34364772 
N 41664 
O 842:48 
P 19:3:24 
Q 162:14 
R 1285:41 
S 4:53:21 
T 1:57:20 
 

The number in line A is the correction for pre-
cession.  Using the algorithm given above we 
have: 
 

1297 + 3739 + 88 = 5124 
5124 / 1800 = 2, remainder 1524 
1524 · 9 /10 = 1471, remainder 6 
1471 / 60 = 22, remainder 51 
6 · 6 = 36 
 

Thus the precession is 22:51:36, where the text 
has 22:51. The number in line B is the true long-
itude of the Sun corrected for precession, which 
is 9:18:6. 
 

The differences of a half-day (in vinadis) for 
Amurapura are 48, 86 and 102, for solar long-

itudes 30°, 60° and 90° respectively.  As the 

Sun is in sign 9 it will have 30° – 18:6° = 11:54° 

to reach sign 10.  Sign 9 has (by symmetry) a 
day difference of 102, sign 10 has 86.  Interpol-
ation gives 86 + 11:54/30·(102 – 86) = 86 + 
6:20:48 = 92:20:48 = 1:32:21. 

 

A half-day is then 15:0:0 – 1:32:21 = 13:27:41, 
and line C in the text has 13:27:40. 

A half-night is 30:0:0 – 13:27:41 = 16:32:19, and 
line D has 16:32:20. 

The number in E is the Moon‘s true longitude, 
corrected for precession, 4:0:42. 

Calculating the half lunar day and night as for 
the Sun gives 16:25:7 and 13:34:53, while the 
text has 16:24:6 and 13:36:54 for lines F and 
G. 

 

The complete phawâ table for Amurapura 
using the symmetries is shown in Table 5.  
 

The Moon's longitude is 4:0:42.  Interpolating 
in the phawâ column gives 157:26.  The equi-
noctial noon shadow for Amurapura is 165, 
giving a noon shadow of 165 – 157:26 = 7:34, 
and the text in line H is 0:7:36.  The Moon shad-
ow is 2:0:0 and the time is after the Moon‘s 
culmination or lunar noon.  The Burmese start 
with a preliminary multiplier, M = 7, and they 
calculate a preliminary time, H, using Equation 
(6′).  The half lunar day, D, according to the text 
is 16:24:6. 
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D · M = 16:24:6 · 7 · 3600 = 413322, line I 
S – Snoon + M = (2:0:0 – 0:7:36 + 7) · 3600 = 

31944, line J 
413322 / 31944 = 12:56:20 
H = D – 12:56:20 = 16:24:6 – 12:56:20 = 3:27:46, 

line K 
 

This is the preliminary shadow time.  Entering 
the multiplier table above with sign 4 and time 3 
gives a multiplier 582, line L. 
 

Repeating the calculation: 
 

D · M = 16:24:6 · 582 · 3600 = = 34364772, line 
M 

S – Snoon + M = ((2:0:0 – 0:7:36) · 60 + 582) · 60 
= 41664, line N. 

34364772 / 41664 = 824:48  
 

The text has 842:48 in line O but uses 
824:48 for the following calculations: 
 

824:48 = 13:44:48 
H = D – 13:44:48 = 16:24:6 – 13:44:48 = 2:39:18. 
 

This is the final time in nadis after lunar noon.  
To obtain the time, T, from moonrise we have  
 

T = D + 2:39:18 = 16:24:6 + 2:39:18 = 19:3:24, 
line P. 

 

The Moon has a longitude 4:0:42 or Leo 0:42.  
The rising time of the sign Leo is 337 vinadis.  
Thus moonrise is 0:42 / 30  337 = 7:52 vinadis 
into Leo and has 337 – 7:52 = 329: 8 left of that 
sign.  The rising time diagram in the text has 
329:10 and thus 7:50 instead of 7:52. 
 

The shadow time 19:3:24 is then 19:3:24 + 
0:7:50 = 19:11:14 from the beginning of Leo.  
Subtracting subsequent rising times: Leo 337, 
Virgo 326, Libra 326 tells us that the shadow 
time is 162:14 vinadis into Scorpio, line Q. 
 

The Sun has a longitude of 9:18:6, and the 
opposite point on the ecliptic is 3:18:6, or Gemini 
18:6.  The rising time for Gemini is 339 vinadis, 
thus sunset is 18:6/30·339 = 204:32 vinadis into 
Gemini and remaining 339 – 204:32 = 134:28 to 
the beginning of Leo. The rising time diagram in 
the text has 134:27. 
 

Thus the shadow time interval from sunset is 
134:27 + 7:50 + 19:3:24 = 1285:41, line R.  The 
difference from 15 nadis of half a solar day is 
1:32:20.  Thus, sunset occurs at 45:0:0 – 1:32:20 
= 43:27:40 nadis from solar midnight.  Adding 
the remaining part of Cancer from sunset tells 
us that the end of Cancer corresponds to 
43:27:40 + 134:27 = 45:42:7 nadis from solar 
midnight.  
 

Moonrise corresponds to 45:42:7 + 7:50 = 
45:49:57 nadis from solar midnight.  Adding the 
half lunar day 16:24:6 and the shadow time in-
terval 2:39:18 after lunar noon gives us 45:49:57 
+ 16:24:6 + 2:39:18 = 64:53:21 = 4:53:21; the 
text has 4:53:21 in line S.  This is the shadow 
time in nadis after solar midnight.  The number 

in line T in the text is this time converted to 
hours:minutes:seconds. 

 

The right-hand column of numbers is the 
back calculation, time to shadow. 
 

D: The shadow time is rounded to 5:0:0, which 
is 6:39 vinadis later than the time in item S.  
5:0:0 nadis after midnight corresponds to 2 
a.m. in line C (right). 

E: 21:2:21 is a misprint for 21:32:21 and is R 
(left) + 6:39. 

F: 168:53 = Line Q (left) + 6:39. 
G: 19:10:3 = Line P (left) + 6:39. 
H: 2:45:57 is the shadow time after lunar noon 

2:39:18 increased by 6:39. 
 

Using Equation (4′) we now calculate shadow 
from time.  With H = 2:45:57 ≈ 3 and a lunar 
longitude 4:0:42  ≈ 4 we get a multiplier M = 582. 
 

D = 16:24:6, D · M · 3600 = 354364772, line I. 
(D – H) · 3600 = (16:24:6 – 2:45:57) · 3600 = 

49089, line J. 
D · M / (D – H) = 354364772 / 49089 = 700:3:1 
D · M / (D – H) – M = 700:3:1 – 582 = 118:3:1 = 

1:58:3 
S = Snoon + D · M / (D – H) – M (Equation 4') = 

1:58:3 + 0:7:34 = 2:5:37, line K. 
 

This value is close to the shadow value we start-
ed with and gives a check that the calculation is 
correct. 

 
Table 5: Phawâ table (after Thi, 1936: 24). 

 

Sign Phawâ 

9 262 
10 8 214 
11 7 110 
  0 6     0 
  1 5    92 
  2 4 159 

3 183 

 
10  DISCUSSION 
 

The original mode of astronomical reckoning in 
South-East Asia, found in Cambodia as far back 
as the seventh century AD, was inherited from 
India, with AD 78 as its epoch (Pingree, 1978).  
In the late thirteenth century this system was 
replaced in Burma and Thailand by a canon with 
an epoch of AD 638, which also was from India.  
This system, known in Burma as Makaranta, 
was eventually modified into the Thandeikhta 
mode in the mid-eighteenth century. While refer-
ence to solar and lunar shadow length occas-
ionally can be found in Burmese records of the 
fifteenth century, the tradition reflected in our 
printed texts is from a somewhat later period and 
is distinctive in its routine use of an adjustment 
for precession and its adoption of successive 
approximation for shadow calculation. 
 

This latter technique, although historically of 
great antiquity elsewhere, is not evident for 
instance in the reform the Thais made to their 
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calculation of eclipses (assigning an epoch of 
AD 1142); and the precision and sophistication 
adopted in shadow reckoning was not, to our 
knowledge, adopted in other allied procedures.  
Indeed, it is symptomatic of both the Burmese 
and the Thai systems that more precise modes 
of reckoning were adopted only when a particular 
isolated need for them arose. The Thais continue 
to use their more approximate method of com-
putation for day-to-day reckoning, and the Bur-
mese use successive approximation for shadow 
length while at the same time not adjusting for 
the Moon‘s considerable motion between rising 
and setting (see Eade, 1995).  
 

It is also symptomatic of the hold that trad-
itional thinking still retains today in Thailand that 
there is a market for calendars that use the 638 
canon to locate the Sun and the Moon (the 
annual ‗Diary Hon‘), while in Burma, as we have 
found, a complicated text has to posit even in its 
twentieth century printed form that the shadows 
of the Sun and of the Moon are more readily 
accessible than a clock time of day. 
 
 
 
 
 
 
 
 
 
 

Figure 5: Data table for Amurapura (after Thi, 1936: 24). 

 
Table 6: Translation of the numbers in Figure 5. 

 
According to modern conception, the under-

lying theory encapsulated in a formula is in gen-
eral of more importance than the results that it 
happens to generate.  In the tradition to which 
our texts belong, once an expert has devised    
a procedure and embodied it in a series of 
mechanically-implemented steps and in tables, 
the number eventually arrived at takes on quasi-
magical properties.  Our concern has been with 
what it was that the theorist was doing in an 
ingenious procedure whose rationale lies well 
below the surface: the purchasers of his text 
would be concerned, by contrast, with what 
painfully-acquired and life-controlling number the 
procedure would generate. 
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13  APPENDICES 
 

13.1  Data Table for Amurapura 
 

In Table 6 (see, also Figure 5) the first column 
displays the difference in day length for long-
itudes 30˚, 60˚ and 90˚ expressed in vinadis.  
For a translation of the numbers, see the table 
section. The second column shows the phawâ 
for the same longitudes and by symmetry also 
for 150˚ and 120˚.  The third column shows 
phawâs for longitudes 210˚, 240˚ and 270˚ and 
by symmetry also for 330˚ and 300˚.  The last 
column shows the equinoctial noon shadow for a 
gnomon with height 7·60 = 420 units. The value 
165 corresponds to geographical latitude 21.45˚. 
 
13.2  Longitude Calculations 
 

A basic quantity that is used for the longitudes is 

the ahargaṇa of date, a, the number of expired 
days since the epoch.  We use mainly corres-
ponding Sanskrit terms for the quantities involv-
ed in the calculation. 
 

Denoting by y, the Burmese year, and by s, 
the sutin, the number of elapsed days in that 
year we have

 
(Irwin, 1909): 

 

a = {[(y – 233) × 29227] + [(y – 233)/193]  
      + 17742}/800 + 1 + s          (7) 
 

For the Sun we also calculate the kyamat of the 
date: 
 

k = remainder{[(y – 233) × 29227] +  
     [(y – 233)/193] + 17742}/800 × s         (8) 
 

The mean longitude of the sun in arc minutes is 
then  
 

λsun = [(1000 × k) – (6 × s)] / 13528          (9) 
 

The Sun‘s apogee ωsun is assumed to be locat-
ed at ωsun = 2 : 17 : 18. 
 

The anomaly, αsun, of the Sun is 
 

αsun = λsun – ωsun          (10) 
 

To calculate the elongation of the Moon from the 
Sun we first calculate the avaman, A, and khaya, 
K, of the date: 

{[(a × 11) – (y – 233)] / 25 + 175} / 692 

  48 
  86 
102 

  92 
159 
183 

110 
214 
262 

165 
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= K:A           (13) 

 K is the integer part of the division and A the 
remainder. 
The Moon‘s elongation is then  
 

η = A + (7 × A) / 173 + 12 × [(a + K) 
      mod 30] × 60 – 52′         (14) 
 

and the mean longitude of the Moon is 
 

λmoon = λsun + η          (15) 
 

The Moon‘s apogee is moving and its location is 
calculated by first calculating  
 

u = (a + 316)mod3232         (16) 
 

and the Moon‘s apogee then is 
 

ωmoon = (3 × u) / 808 – 0 : 4 : 24        (17) 
 

The anomaly is 
 

αmoon = λmoon – ωmoon         (19) 
 

The equation of centre, or the correction in 
arc minutes to the mean longitude, is given in 
tabular form as a chaya.  It is a table with 
arguments of angle from 0˚ to 90˚ in 24 steps of 
3.75˚.  If the anomaly is larger than 180˚ we use 
as argument the 360˚ complement of the anom-
aly, and if this complement is larger than 90˚ the 
180˚ complement of the complement is used.  
 

The chayas are given in Table 7 below. 
 

The chaya value is added to the mean longi-
tude if the anomaly is larger than 180˚, otherwise 
subtracted from the mean longitude. 
 

By way of an example, let us examine Bur-
mese year 1297 Pyatho 3 waning, y = 1297, s = 
268. 
 

a = {[(1297 – 233) × 29227] + [(1297 – 233) / 
     193] + 17742} / 800 + 1 + 268 = 72247 
 

k = remainder{[(1297 – 233) × 29227] +  
     [(1297 – 233)/193] + 17742} /800 × 268 
     = 21507 
 

{[(72247 × 11) – (1297 – 233)] / 25 + 175} / 692 

= 1148 : 470 

 λsun = [(1000 × 215078) – (6 × 268)] / 13528 
      = 15898′ = 6:24:58 
 

η = 470 + (7 × 470) / 173 + 12 × [(72247+ 1148) 
      mod 30] × 60 – 52′ = 11237′  
 

λmoon = 15898 + 11237 = 5535′  = 3 : 2 : 15
 

 u = (72247 + 316)mod3232 – 1459 

 ωmoon = (3 × 1459) / 808 – 0:4:24 
         = 5 : 12 : 30 – 0:4:24 = 5:8:6 
 

We get: 
 

αsun = 11260′ = 6:7:40     αmoon = 17649′ = 9:24:9 
 

These anomalies give respectively corrections 
of +17′ and +276′ and true longitudes are 
 

λsun = 15915′ = 8:25:15      λmoon = 5811′ = 3:6:51 
 

The printed text (Thi, 1936: 25) has 3:7:51. Plus 
a precession value of 0:22:51 = 4:0:42 for the 
Moon. 

 
Table 7: Chayas for the Sun and Moon (after Mauk, 1971: 
85). 
 

Sun Moon 

Argument Correction Argument Correction 

  0     0   0     0 

  1     9   1   20 

  2   17   2   40 

  3   26   3   60 

  4   34   4   79 

  5   43   5   98 

  6   51   6 116 

  7   58   7 134 

  8   66   8 152 

  9   73   9 169 

10   80 10 185 

11   87 11 200 

12   93 12 214 

13   99 13 228 

14 104 14 241 

15 109 15 252 

16 113 16 262 

17 117 17 272 

18 121 18 280 

19 124 19 287 

20 126 20 293 

21 128 21 297 

22 129 22 300 

23 130 23 302 

24 131 24 303 

 
12.3  Rising Times and Oblique Ascension 
 

To calculate the rectascension, E, of the Sun 
given the longitude λ and the obliquity ε  =  24˚: 
 

tan E = tan λ cos ε         (20) 
 

Subtract the ascensional difference, A, calculat-
ed in the day length section above.  The oblique 
ascension is the difference Ω = E – A.  The ris-
ing times of the zodiacal signs are then the 
differences between the oblique ascension for 
sequential signs.  As there are 3600 vinadis to a 
solar day and night, a rotation of the Earth by 
360˚, the conversion from degrees to vinadis is 
just simply multiplication by 10. 
 

Table 8 shows the result of a calculation of 
the values in the rising time diagram. 
 

Table 8. Rising times for Amurapura 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Longitude (°) E A E–A Difference 

    0       0     0       0 230 

  30   278   48   230 261 

  60   577   86   491 307 

  90   900 102   798 339 

120 1223   86 1137 337 

150 1522   48 1474 326 

180 1800     0 1800  
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