
Mt Stromlo Observatory, near the Australian capital city of Canberra, is one of the great astronomical observatories of the world.

Formed as a solar observatory in 1924, it turned to astrophysics in the 1940s, and for the past decade or so staff have carried out forefront research in ‘galactic archaeology’ which in 2011 culminated in the Observatory’s Brian Schmidt sharing the Nobel Prize for Physics with two U.S. astronomers.

It is now more than a decade since Tom Frame and the late Don Faulkner produced Stromlo: An Australian Observatory (2003), so it is good to have a new perspective that also brings us up to date.

Mt Stromlo Observatory: From Bush Observatory to the Nobel Prize, written by a science historian from the University of Western Sydney, a current member of the Stromlo staff and a former Director, recounts the history of Mt Stromlo Observatory in thirteen chronologically-based chapters, each with its own distinctive title.

For those familiar with Australian astronomical history the first two chapters (‘A beginning in the bush’ and ‘A bush observatory’, covering collectively the period 1905 to 1929) traverse familiar territory: Geoffrey Duffield’s ingenuity in gaining Federal Government approval for the formation of a new solar observatory near Canberra, and its subsequent erection. After lengthy frustrating delays caused partly by WWI, the Commonwealth Solar Observatory was formally established on 1 January 1924, with a suitably-rewarded Duffield as the founding Director. “After almost 18 years Duffield had realized his dream of an observatory …” (page 27), even if the staff had to use temporary facilities at the Hotel Canberra while the Observatory was under construction.

Next is a chapter titled ‘Caretaker’, which spans the period 1930–1939 when William Rimmer was the Officer-in-Charge (following Duffield’s sudden death on 1 August 1929). Fortunately, the Great Depression had relatively little impact on the Observatory, where the solar and ionospheric research programs initiated under Duffield were continued. This chapter introduces Ronald Giovanelli, who was the vibrant Chief of the CSIRO’s Division of Applied Physics in the 1960s when I worked in the Division of Radiophysics and we shared the same building in Sydney. Ron was a very productive Visiting Fellow at Stromlo in 1937–1939.

And so we arrive at Chapter 4, ‘Second World War: the Observatory becomes an Optical Munitions Factory’. Richard Woolley was the new Director, and the Observatory’s role was to support the allied war effort through the design and construction of optical equipment no longer easily accessed from overseas. At Stromlo the staff increased sevenfold, but I was surprised to learn that

Rather than having a central research institution, the optical work was spread out to no fewer than 25 establishments, including several firms and university physics departments. (page 64; my italics).

Among the employees was Syd Elwin, who is shown (but not identified) in Figure 4.9. After the war Elwin joined the Sydney Technical College, where he taught optics. During the 1960s, 1970s and 1980s he was one of Australia’s leading amateur astronomers, and was a prolific observer of variable stars. In 1982 he was the first recipient of the Bernice Page Medal which would then be awarded every two years by the Astronomical Society of Australia for outstanding research by an amateur. Syd Elwin died in 1990 (Bembrick, 1990).

Chapter 5 (‘The change master’) tracks Woolley’s success in gradually turning Stromlo into an astrophysical observatory following the war, even though “… no one on the staff had any extensive knowledge of stellar astronomy.” (page 78). This was the time when the institution changed its name to the Commonwealth, and later, Mt Stromlo Observatory, and when the 30-in reflector, donated many years earlier, finally was refurbished so that it could be used for photoelectric photometry. It also marked the start of substantial U.S. influence at Stromlo, with extended visits by Gerald Kron and Olin Eggen from 1951. Woolley realized that the Observatory’s future depended on larger telescopes, culminating—eventually—in the commissioning of the refurbished ‘Great Melbourne Telescope’ and a Grubb-Parsons 74-in reflector. The ‘Great Melbourne Telescope’, with its original 48-in speculum mirror, had an interesting history (see Gillespie, 2011), but at Stromlo it featured a short-focus 50-in pyrex mirror. Woolley also convinced Uppsala University to site their new Schmidt at Mt Stromlo, and he arranged the transfer of the Yale-Columbia 26-in refractor.
from South Africa to Stromlo. Finally, Woolley’s other key achievement was to arrange for the Observatory to be transferred from the Department of the Interior to the Australian National University. But this only occurred in January 1957, just over a year after he had left Stromlo in order to accept the post of Astronomer Royal in England.

The new Director was Bart Bok, an international figure who was widely respected for his research in both optical astronomy and radio astronomy. He is the focus of Chapter 6, titled ‘The astronomical godfather’. Bok was the first Professor of Astronomy at the Australian National University, and his legacies were the graduate school, that he established; Siding Spring field station; research by Stromlo astronomers on the Milky Way and the Magellanic Clouds; Stromlo’s first international symposium, on this latter topic; bringing the 74-in telescope, and later its coudé spectrograph, into operation; the introduction of digital computers; his success in lobbying for the 3.9-m Anglo-Australian Telescope; and his acumen in bringing astronomy before the Australian Parliament and the general public. His public lectures were legendary, and whenever he performed in Sydney I tried to attend. To this day, he remains the most captivating entertaining public speaker I have ever encountered.

In March 1966 Bart Bok and Priscilla returned to the U.S.A., and Stromlo’s new Director was a familiar face from earlier years, Olin Eggen. The authors start each chapter with between one and three quotations, often from notable astronomers, highlighting the achievements of the subject of that chapter. One of the three quotations that launches Chapter 7 (‘A life on the dome floor’) is by Ben Gascoigne, and this is what he has to say about Eggen:

What I [Ben Gascoigne] think he will be remembered for is the controversy over the AAT and the great rift that developed between Stromlo and the rest of Australian astronomy ... It was very damaging; it was years before Stromlo was accepted back into the fold, and it saw the centre of optical astronomy shift considerably from Canberra to Sydney. (page 129).

But is this really true? It suggests that Eggen achieved little. Certainly, there was controversy over the hosting of the Anglo-Australian Observatory, and yes, optical astronomy did grow rapidly in Sydney, through developments at the various universities, but this had nothing to do with Eggen. However, Eggen’s Directorship was marked by an impressive increase in the annual publications output of the Observatory; the acquisition of important new instrumentation; the growth of a pool of brilliant new staff members or Ph.D. students (including Mike Dopita, Ken Freeman, Harvey Butcher, Jeremy Mould, John Norris and Alex Rodgers) who would forge international reputations, and in several cases, eventually become Directors of the Observatory). In addition, Eggen’s work on the motions, ages and compositions of stars in the Milky Way became a research theme for a generation of Stromlo astronomers. (page 134).

To my mind, these were Eggen’s key achievements, and as for Gascoigne’s claim that Eggen caused a rift in the Australian astronomical community that would take years to heal we need only note that when Don Mathewson took over the Directorship from Eggen in 1979 he was widely respected and accepted by optical and radio astronomers throughout Australia, as were the other leading astronomers at Stromlo. It is obvious that there was ‘bad blood’ between Eggen and Gascoigne, so we need to allow for an element of bias in Gascoigne’s statements and his assessment. It is a great pity that we do not have Eggen’s ‘take’ on all this, so we can learn why he chose to marginalize his one-time friend.

Chapter 8 (‘an astronomical entrepreneur’) covers Don Mathewson’s directorship, and is of great interest to me. Don and I were both closely associated with the Chris Cross radio telescope at Fleurs, near Sydney (see Orchiston and Mathewson, 2009) and I knew him well during our days at Radiophysics in the 1960s, so in 1985 I accepted his invitation to take up a Visiting Fellowship at Mt Stromlo and Siding Spring Observatory and carry out research on the history of Australian astronomy. After serving as Acting Director following Eggen’s departure in September 1977, Don took over as Director in April 1979, the first Australian since Duffield to lead the institution. Under his directorship the annual publications output and the number of graduate students increased substantially, while Mathewson’s discovery of the Magellanic Stream was the highlight of his research career (see Mathewson, 2012). Other Stromlo astronomers also made important contributions to photoelectric photometry; studied the Hubble Constant, quasars, and planetary nebulae in the Magellanic Clouds, and conducted theoretical studies of Mira variables. This also was the first time that a number of Stromlo staff used space-based telescopes for their research programs. Mathewson’s other major achievement was the 2.3-m Advanced Technology Telescope (ATT), a computer-controlled thin mirror telescope on an altazimuth mounting, which the popular Australian Prime Minister, Bob Hawke, opened at Siding Spring on 16 May 1984 (and because the Annual Meeting of the Astronomical Society of Australia was held at the time in nearby Coonabarabran, many of us from the Australian astronomical community were able to attend this grand event). This telescope was a great success, and it served as the model for later telescopes that were built around the world. Very recently the ATT was refurbished, so that it can continue to contribute
... was an exceptional instrumentalist and enjoyed nothing more than spending time in the Observatory’s workshops, getting his hands dirty... He also was responsible for moving the Observatory into the electronic era by designing and constructing photon-counting arrays... In fact, he kept the Observatory’s instrumentation up to date, thus enabling it to remain at the forefront of international astronomy. (page 178).

Rodgers’ major achievement was to refurbish the Great Melbourne Telescope so that it could be used for the MACHO Project: the search, using gravitational lensing, for evidence of the missing mass in our Galaxy. Other staff members carried out important research on star-forming regions, planetary nebulae in the Magellanic Clouds, and SN1987A. Rodgers’ one major regret was that his concept of a locally-built 14-m telescope had to be abandoned, because Australian sites adequate to justify so large and expensive a telescope could not be found.

Chapter 10 (‘Masters of the universe’) discusses Jeremy Mould’s directorship, from December 1993, when a number of different Stromlo staff made major discoveries and received national or international honours. In 1998 the Government provided funding for Australian astronomers to access 4.76% of observing time on the two Gemini Observatory 8.1-m telescopes, and Stromlo, working in partnership with other institutions, won contracts to design and construct instruments for the Gemini North telescope and ESO’s Very Large Telescope. Thus, Mould’s ideas about the feasibility of generating income from the commercialisation of astronomical instrumentation were being vindicated. (page 199).

Mould also brought Stromlo research to the public by opening a Visitor Centre on the mountain, designed in the best tradition of overseas science centres, and there was an impressive range of research to promote. Personally, Mould was primarily interested in the Hubble Constant, utilising Hubble Space Telescope data, and his team derived a figure of \(72 \pm 8 \text{ km s}^{-1} \text{Mpc}^{-1}\). A second major Stromlo cosmological project was led by Brian Schmidt. He and the ‘High-Z Supernova Team’ came up with an amazing result: that the expansion of the Universe was speeding up. Furthermore, by utilising data derived from supernovae and the cosmic microwave background, Schmidt et al. came up with figures of about 25% dark matter and 70% dark energy for the composition of the Universe. Stromlo’s third major cosmological research project was the 2dF Galaxy Redshift Survey led by Matthew Colless and Durham University’s Richard Ellis. This project explored the large-scale structure of the Universe, and “… produced more than 50 papers, of which more than 20 were in the highly cited category.” (page 214). Colless and his colleagues also were able to derive a figure of 23% for the percentage of dark matter in the Universe, remarkably close to the value obtained by Schmidt. Two other notable Stromlo projects were carried out during Mould’s directorship, one by John Norris and Mike Bessell on stars with low metallicities, and the other by Ken Freeman and Stromlo colleagues on the chemical evolution of globular clusters. As a result of this research, in 2001 six Stromlo astronomers (out of a total of 33 Australian astronomers) were selected by the Institute of Scientific Information as Citation Laureates. They were Mike Bessell, Matthew Colless, Mike Dopita, Ken Freeman, Jeremy Mould and Bruce Peterson. In addition, Ken Freeman was elected an F.R.S. in 1998 and the following year received the Dannie Heinemann Prize, while Brian Schmidt was the inaugural winner of Australia’s Malcolm McIntosh Award for Achievement in the Physical Sciences.

Stromlo’s eighth Director, American Penny Sackett, took over from Acting Director John Norris on 22 July 2002. She was Stromlo’s first (and thus far only) female Director, and Chapter 9 (‘Bushfires and a new beginning’) highlights her achievements. As the chapter title suggests, the most momentous event that occurred during her short directorship was the disastrous Canberra bushfire of 18–22 January 2003 which not only led to the loss of 4 lives but also the destruction of much of Mt Stromlo, surrounded as it was by pine trees. Mt Stromlo Observatory: From Bush Observatory to the Nobel Prize shows image after image of burning or burnt-out observatory buildings—a poignant reminder of the power of nature. All of the telescopes on the mountain were destroyed, as were the workshop and the library (where I had spent many hours carrying out my research), and the $5 million Near-infrared Integral Field Spectrograph, which was undergoing final testing before being shipped to the Gemini North Telescope in Hawaii. Fortunately, the Visitor Centre and the main building housing the astronomers’ offices survived intact. As the authors say, a lesser person would have given up, but instead Penny Sackett focusing on rebuilding the Observatory. Despite on-going problems with the insurers, by the time she completed her term as Director in 2007, Stromlo had a new Advanced Instrumentation Technology Centre; a replacement Spectrograph had been constructed for the Gemini North Telescope and an Adaptive Optics Imager for the Gemini South Telescope; and con-
struction of Brian Schmidt’s 1.35-m Sky-mapper had been approved. But more important was Sackett’s success in getting Stromlo formally involved in planning the Giant Magellan Telescope, which the authors regard as “… the best and furthest-reaching decision she made for the future of the Observatory and Australian astronomy.” (page 243). Despite the devastating fire, the Stromlo research staff were remarkably productive during Sackett’s directorship, producing >500 research papers on “… solar and extrasolar planetary systems, stars and stellar populations, the Milky Way and galaxies, dark energy and dark matter, gamma-ray bursts, interstellar medium and galactic feedback, and adaptive optics. (page 244).

In 2002 Ken Freeman and Joss Bland-Hawthorn (from the Anglo-Australian Observatory) wrote a major review paper on how our Galaxy was formed for the Annual Review of Astronomy and Astrophysics, and in 2005 Mike Bessell prepared a paper on standard photometric systems for the same journal. In that same year, Brian Schmidt was awarded a prestigious Federation Fellowship and in 2006 he shared the Shaw Prize with two American colleagues.

It is sometimes hard to decide where the chronological cut-off date should be for any historical study, especially when one of the authors just happens to be a former Director of the Observatory in question. In the case of Mt Stromlo Observatory … Chapter 12 is the last, and it spans the period 2007–2013 and Harvey Butcher’s Directorship, where his “… approach to doing research, of developing new instrumental capabilities to make new observations possible, characterized … his career.” (page 254). Butcher continued the direction charted by Penny Sackett, appointing new staff with international reputations, involving Stromlo in the Australian space industry, developing an adaptive optics facility and obtaining further Government funding for Stromlo’s participation in the Giant Magellan Telescope. Cutting-edge research continued, and the annual number of published research papers increased. Several staff members reaped international honours, led by American-born Brian Schmidt who shared the 2011 Nobel Prize for Physics with two other American astronomers. In addition, in 2007 Schmidt and members of the High-Z Supernovae Research team shared the Gruber Prize for Cosmology. Schmidt also was elected an F.R.S.

In 2012 Ken Freeman received the Prime Minister’s Prize for Science. Also a F.R.S., in January 2013 he was awarded the Mathew Flinders Medal by the Australian Academy of Science and the Henry Norris Russell Lectureship by the American Astronomical Society. For further details of Butcher’s directorship see Bhathal (2014).

The final chapter of the book is titled ‘Brian Schmidt’s Nobel Lecture 2011: accelerating expansion of the universe through observations of distant supernovae’. After a 1-page introduction, there is a reprint of the 25-page paper by Brian P. Schmidt with the above title that was published in the Review of Modern Physics on 13 August 2012.

Mt Stromlo Observatory … is beautifully illustrated, boasting numerous images that have never been published before, many in colour. But although the book is well written, there are some obvious omissions or areas of over-simplification which should have been picked up by the assessors of the MS. For instance, while Clia Allen was indeed involved in galactic radio astronomy (page 80), the important contributions that he and his Stromlo colleague David Martyn made to solar radio astronomy (see Orchiston et al., 2006: 51–53) are ignored. Then, prior to the 50-in and 74-in telescopes becoming operational, the workhorses for the Observatory’s research programs were the 30-in Reynolds reflector and the ‘Catts Telescope’. Between 1952 and 1963 … the Catts Telescope was first used at MSO in its original 20-in Cassegrainian configuration and from December 1959 as a refurbished 26-in Cassegrainian reflector at the Mount Bingar field station … [It] was used very effectively by ten MSO astronomers and visiting astronomers and by five different Ph.D. students for photometry or spectrophotometry of stars in our Galaxy and for photometry of clusters of southern extra-galactic nebulae. These investigations resulted in the publication of twenty-six research papers based in toto or in part on observations made with the Catts Telescope, and these were published mainly in The Astronomical Journal, The Astrophysical Journal, Monthly Notices of the Royal Astronomical Society, The Observatory and Publications of the Astronomical Society of the Pacific. (Orchiston, 2010: 251).

There are also numerous minor errors of fact. Figure 2.8 shows a traction engine not a ‘tractor’. It is misleading (pages 39–40) to claim that Janssen and Lockyer alone discovered helium, when Pogson was the first to notice and comment on the anomalous yellow emission line, during the 1868 total solar eclipse (see Nath, 2013). Although used briefly for solar observations, the Collaroy radar station in Sydney (page 77) never was a CSIRO Division of Radiophysics field station (see Orchiston and Slee, 2005). The claim that R.H. Reynolds (the donor of the 30-in telescope) was the only amateur astronomer to serve as President of the Royal Astronomical Society (page 78) is certainly incorrect, as over the years many other amateur astronomers held
this office, including Francis Bailey, George Bishop, Henry Colebrooke, Arthur Common, Sir John Herschel, Sir William Huggins, Edward Knobel, William Lassell, Dr John Lee, William Maw, T.E.R. Phillips, Sir James South and Lord Wrottesley. When Walter Stibbs moved to Scotland it was as the Napier Professor of Astronomy at the University of St. Andrews and not just as “… Director of the St. Andrews Observatory …” (page 79). And contrary to the claim on page 190, SN 1987A was independently discovered on the same night by lan Sheldon (University of Toronto), as well as Oscar Duhalde (Las Campanas Observatory) and the world’s leading visual observer of variable stars, amateur astronomer Albert Jones of New Zealand (see Marsden, 1987), and all should be assigned equal credit. On page 226 Sydney’s Ruby Payne-Scott is listed as the world’s first female radio astronomer, but her career in radio astronomy was inspired by Dr Elizabeth Alexander, who carried out earlier research in New Zealand (for details see Orchiston, 2005). Fortunately, ‘typos’ are rare, although descendents of Heinz Gollnow would not enjoy seeing him listed as ‘Gollnow’ on page 109 (and in the Index).

One of the positive features of this book is the extensive use made throughout of sidebars to provide specific information without detracting from the flow of the main narrative. Some of these are biographical, others contain very specialised astronomical material, whilst yet others impart general information. Thus, there are sidebars on the ‘Rise of astrophysics’, ‘Stark effect’, ‘The ionosphere and radio communications’, ‘McCarthyism and the intellectual community in the US’, ‘Supernova 1987A’, ‘WIMPS and MACHOs’, ‘Women astronomers in Australia’ and the ‘Butcher-Oemler effect’, to name just a few. However, given his research interest in Australian astronomical history, it would seem that Bhathal missed several excellent opportunities. For instance, Father O’Connell is mentioned on page 84, without any indication of who he was or where he worked. He was Director of the Riverview Observatory in Sydney and it would have been nice to learn a little about this Jesuit research institution and its work on variable stars. Again, on page 163 we discover that an innovative feature of the 2.3-m Advanced Technology Telescope was that the whole observatory building rotated, not just the dome. Yet this was not an Australian ‘first’, for Henry Russell constructed the very same type of facility at Sydney Observatory back in 1880 (Orchiston and Bhathal, 1982), and associated with this observatory was a 15-in reflector with a mounting designed by Russell that is reminiscent of the horseshoe mounting that was used much later with the 200-in Palomar Telescope (Orchiston, 2000).

Although this book is well written and well illustrated, it is clear that the senior author could have been more thorough in his research as numerous errors of fact occur and some key references are missing. It is equally clear that the publishers did not maintain an adequate level of quality control during the printing process for my review copy suffers from having pages 132, 133, 136, 137, 140, 141, 144 and 145 overprinted with pages 90, 87, 86, 83, 98, 95, 94 and 91 respectively, making nearly half of the Eggan chapter totally unreadable! Without this defect, and with the numerous errors corrected, Mt Stromlo Observatory … would be good value at just AU$39.95.

References

